一文解析Apache Avro数据
摘要:本文将演示如果序列化生成avro数据,并使用FlinkSQL进行解析。
本文分享自华为云社区《【技术分享】Apache Avro数据的序列化、反序列&&FlinkSQL解析Avro数据》,作者: 南派三叔。
技术背景
随着互联网高速的发展,云计算、大数据、人工智能AI、物联网等前沿技术已然成为当今时代主流的高新技术,诸如电商网站、人脸识别、无人驾驶、智能家居、智慧城市等等,不仅方面方便了人们的衣食住行,背后更是时时刻刻有大量的数据在经过各种各样的系统平台的采集、清晰、分析,而保证数据的低时延、高吞吐、安全性就显得尤为重要,Apache Avro本身通过Schema的方式序列化后进行二进制传输,一方面保证了数据的高速传输,另一方面保证了数据安全性,avro当前在各个行业的应用越来越广泛,如何对avro数据进行处理解析应用就格外重要,本文将演示如果序列化生成avro数据,并使用FlinkSQL进行解析。
本文是avro解析的demo,当前FlinkSQL仅适用于简单的avro数据解析,复杂嵌套avro数据暂时不支持。
场景介绍
本文主要介绍以下三个重点内容:
- 如何序列化生成Avro数据
- 如何反序列化解析Avro数据
- 如何使用FlinkSQL解析Avro数据
前提条件
- 了解avro是什么,可参考apache avro官网快速入门指南
- 了解avro应用场景
操作步骤
1、新建avro maven工程项目,配置pom依赖
pom文件内容如下:
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.huawei.bigdata</groupId> <artifactId>avrodemo</artifactId> <version>1.0-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro</artifactId> <version>1.8.1</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.avro</groupId> <artifactId>avro-maven-plugin</artifactId> <version>1.8.1</version> <executions> <execution> <phase>generate-sources</phase> <goals> <goal>schema</goal> </goals> <configuration> <sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory> <outputDirectory>${project.basedir}/src/main/java/</outputDirectory> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> </plugins> </build> </project>
注意:以上pom文件配置了自动生成类的路径,即${project.basedir}/src/main/avro/和${project.basedir}/src/main/java/,这样配置之后,在执行mvn命令的时候,这个插件就会自动将此目录下的avsc schema生成类文件,并放到后者这个目录下。如果没有生成avro目录,手动创建一下即可。
2、定义schema
使用JSON为Avro定义schema。schema由基本类型(null,boolean, int, long, float, double, bytes 和string)和复杂类型(record, enum, array, map, union, 和fixed)组成。例如,以下定义一个user的schema,在main目录下创建一个avro目录,然后在avro目录下新建文件 user.avsc :
{"namespace": "lancoo.ecbdc.pre", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] }
3、编译schema
点击maven projects项目的compile进行编译,会自动在创建namespace路径和User类代码
4、序列化
创建TestUser类,用于序列化生成数据
User user1 = new User(); user1.setName("Alyssa"); user1.setFavoriteNumber(256); // Leave favorite col or null // Alternate constructor User user2 = new User("Ben", 7, "red"); // Construct via builder User user3 = User.newBuilder() .setName("Charlie") .setFavoriteColor("blue") .setFavoriteNumber(null) .build(); // Serialize user1, user2 and user3 to disk DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class); DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter); dataFileWriter.create(user1.getSchema(), new File("user_generic.avro")); dataFileWriter.append(user1); dataFileWriter.append(user2); dataFileWriter.append(user3); dataFileWriter.close();
执行序列化程序后,会在项目的同级目录下生成avro数据
user_generic.avro内容如下:
Objavro.schema�{"type":"record","name":"User","namespace":"lancoo.ecbdc.pre","fields":[{"name":"name","type":"string"},{"name":"favorite_number","type":["int","null"]},{"name":"favorite_color","type":["string","null"]}]}
至此avro数据已经生成。
5、反序列化
通过反序列化代码解析avro数据
// Deserialize Users from disk DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class); DataFileReader<User> dataFileReader = new DataFileReader<User>(new File("user_generic.avro"), userDatumReader); User user = null; while (dataFileReader.hasNext()) { // Reuse user object by passing it to next(). This saves us from // allocating and garbage collecting many objects for files with // many items. user = dataFileReader.next(user); System.out.println(user); }
执行反序列化代码解析user_generic.avro
avro数据解析成功。
6、将user_generic.avro上传至hdfs路径
hdfs dfs -mkdir -p /tmp/lztest/ hdfs dfs -put user_generic.avro /tmp/lztest/
7、配置flinkserver
- 准备avro jar包
将flink-sql-avro-*.jar、flink-sql-avro-confluent-registry-*.jar放入flinkserver lib,将下面的命令在所有flinkserver节点执行
cp /opt/huawei/Bigdata/FusionInsight_Flink_8.1.2/install/FusionInsight-Flink-1.12.2/flink/opt/flink-sql-avro*.jar /opt/huawei/Bigdata/FusionInsight_Flink_8.1.3/install/FusionInsight-Flink-1.12.2/flink/lib chmod 500 flink-sql-avro*.jar chown omm:wheel flink-sql-avro*.jar
- 同时重启FlinkServer实例,重启完成后查看avro包是否被上传
hdfs dfs -ls /FusionInsight_FlinkServer/8.1.2-312005/lib
8、编写FlinkSQL
CREATE TABLE testHdfs( name String, favorite_number int, favorite_color String ) WITH( 'connector' = 'filesystem', 'path' = 'hdfs:///tmp/lztest/user_generic.avro', 'format' = 'avro' );CREATE TABLE KafkaTable ( name String, favorite_number int, favorite_color String ) WITH ( 'connector' = 'kafka', 'topic' = 'testavro', 'properties.bootstrap.servers' = '96.10.2.1:21005', 'properties.group.id' = 'testGroup', 'scan.startup.mode' = 'latest-offset', 'format' = 'avro' ); insert into KafkaTable select * from testHdfs;
保存提交任务
9、查看对应topic中是否有数据
FlinkSQL解析avro数据成功。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
阿里巴巴超大规模 Kubernetes 基础设施运维体系揭秘
作者:仔仁、墨封、光南 序言 ASI:Alibaba Serverless infrastructure,阿里巴巴针对云原生应用设计的统一基础设施。ASI 基于阿里云公共云容器服务 ACK之上,支撑集团应用云原生化和云产品的 Serverless 化的基础设施平台。 2021 年天猫双十一,对于 ASI 来说又是难忘的一年,今年我们又完成了很多“第一次”: 第一次全面统一调度:电商、搜索、odps 离线和蚂蚁业务全面上 ASI 统一调度架构,整个业务核数达到了惊人的数千万核。 第一次将搜索业务“无感知”平滑迁移到 ASI:近千万核的业务,业务无感的搬到 ASI(但是我们却经历了很多个不眠之夜)。 ASI 场景的 K8s 单集群规模超过万台节点,数百万核,超越 K8s 社区的 5000 台规模,不断优化大规模集群的性能和稳定性。 中间件服务第一次用云产品架构支持集团业务:中间件基于 ASI 公共云架构,将中间件服务平滑迁移到云上,用云产品架构支持集团业务,实现“三位一体”。 ASI 在大规模生产应用的锤炼下,不仅沉淀了非常多的 K8s 稳定性运维能力,更是在支持 serverless 场...
- 下一篇
TDSQL | DB·洞见回顾|基于LSM-Tree存储的数据库性能改进
LSM-Tree(Log Structured Merge Tree)是数据库领域内较高效的key-value存储结构,被广泛应用于工业界数据库系统,如经典的单机kv数据库LevelDB、RocksDB,以及被诸多分布式NewSQL作为底层存储引擎。 本期将由腾讯云数据库高级工程师韩硕来为大家分享基于LSM-Tree存储的数据库性能改进,重点介绍近年来学术界对LSM-Tree的性能改进工作,并探讨这些改进措施在工业界数据库产品中的应用情况以及落地的可能性。以下是分享实录: 1. LSM-Tree基本结构 LSM-Tree全称为“Log Structured Merge Tree”,是一种基于磁盘存储的数据结构。1996年Patrick O’Neil等人在信息系统期刊上发表了一篇题名为“Log Structured Merge Tree”的论文,首次提出LSM-Tree结构。相比于传统的B+树,LSM-Tree具有更好的写性能,可以将离散的随机写请求转换成批量的顺序写操作,无论是在RAM、HDD还是在SSD中,LSM-Tree的写性能都更加优秀。 作为高效的key-value存储结构,L...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- SpringBoot2全家桶,快速入门学习开发网站教程
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS8编译安装MySQL8.0.19
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作