首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/3996014/blog/5152548

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

直播时各种背景是怎么实现的?聊一聊虚拟背景背后的技术

作者|羿川 审校|泰一 虚拟背景依托于人像分割技术,通过将图片中的人像分割出来,对背景图片进行替换实现。根据其使用的应用场景,大体可以分成以下三类: 直播场景:用于氛围营造,例如教育直播、线上年会等; 实时通讯场景:用于保护用户隐私,例如视频会议等; 互动娱乐场景:用于增加趣味性,例如影视编辑、抖音人物特效等。 实现虚拟背景需要用到哪些技术? 实时语义分割 语义分割旨在对图像的每个像素进行标签预测,在自动驾驶、场景理解等领域有着广泛的应用。伴随移动互联网、5G 等技术的发展,如何在算力受限的终端设备进行高分辨率的实时语义分割,日益成为迫切的需求。上图列举了近年来的实时语义分割方法,本小节将对其中的部分方法进行介绍。 BiSeNet:Bilateral Segmentation Network for Real-time Semantic Segmentation 先前的实时语义分割算法通过限定输入大小、减少网络通道数量、舍弃深层网络模块来满足实时性的需求,但是由于丢弃过多空间细节或者牺牲模型容量,导致分割精度大幅下降。因此,作者提出了一种双边分割网络(BiseNet,ECCV2018)...

论文赏析:十亿级别单机向量检索方案DiskAnn

摘要 “DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node” [1] 是 2019 年发表在 NeurIPS 上的论文。该文提出了一种基于磁盘的 ANN 方案,该方案可以在单个 64 G 内存和足够 SSD 的机器上对十亿级别的数据进行索引、存储和查询, 并且能够满足大规模数据 ANNS 的三个需求: 高召回、低查询时延和高密度(单节点能索引的点的数量)。该文提出的方法做到了在 16 核 64G 内存的机器上对十亿级别的数据集 SIFT1B 建基于磁盘的图索引,并且 recall@1 > 95% 的情况下 qps 达到了 5000, 平均时延不到 3ms。 论文作者 Suhas Jayaram Subramanya: 前微软印度研究院员工,CMU 在读博士。主要研究方向有高性能计算和面向大规模数据的机器学习算法。 Devvrit:Graduate Research Assistant at The University of Texas at Austin。研究方向是理论计算机...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。