# 一次鞭辟入里的 Log4j2 日志输出阻塞问题的定位 ## 问题现象 线上某个应用的某个实例突然出现某些次请求**服务响应极慢**的情况,有几次请求**超过 60s 才返回**,并且通过日志发现,服务线程并没有做什么很重的操作。这种情况断断续续持续了半小时左右。 ## 核心问题定位 由于半小时后,服务实例恢复正常,并且出现请求极慢的次数并不太多,没有能及时打印出现问题的时候线程堆栈采集相关信息。但是,我们有自己的法宝,**JFR**(关于 JFR,请参考我的另一系列[JFR全解](https://www.zhihu.com/column/c_1264859821121355776))。 **JFR** 非常适合用来事后复盘定位问题,并且配置得当的话,性能损耗极小,并且不像 APM 系统一样需要额外的采集以及需要统一的服务进程进行整合展现。我们**随用随取**即可,但是 JFR 面向的是单进程的问题定位,找到问题进程,定位跨进程业务问题链路追踪还是需要 APM 系统的。 我们通过如下命令采集对应时间段的 JFR: ``` jcmd 进程pid JFR.dump begin=2021-07-04T17:30:00.000Z end=2021-07-04T18:30:00.000Z ``` 我们选择的时间跨度比出问题的时间跨度大一些,这样保证底层问题出现的时候也被采集写入这个 dump 文件。 对于**历史某些请求响应慢**,我一般按照如下流程去看: 1. 是否有 STW(Stop-the-world,参考我的另一篇文章:[JVM相关 - SafePoint 与 Stop The World 全解](https://juejin.cn/post/6854573211968143373)): 1. 是否有 GC 导致的长时间 STW 2. 是否有其他原因导致进程所有线程进入 safepoint 导致 STW 2. 是否 IO 花了太长时间,例如调用其他微服务,访问各种存储(硬盘,数据库,缓存等等) 3. 是否在某些锁上面阻塞太长时间? 4. 是否 CPU 占用过高,哪些线程导致的? 接下来我们来详细分析,首先是 GC,从下图看,并没有能严重影响线程 STW 很长时间的:  然后查看 safepoint 相关,发现也没有什么影响:  接着,我们查看 IO 相关的事件,也并没有发现业务相关的阻塞读:   然后,我们查看是否在某些锁上面阻塞太长时间,终于发现异常:  通过堆栈,我们发现是** log4j2 打印日志卡住了**。 ## 问题分析 ### 1. Java Monitor Blocked 的 Monitor Address 对于同一个对象也是会改变的 首先,对于 Java Monitor Blocked 这个事件,我们可以通过 Monitor Address 来判断是否是同一个锁。例如这里我们发现这些线程都是阻塞在 `FFFF 4C09 3188` 这个地址的对象,这个地址是基于对象在 Java 堆中的相对地址得出的。 但是**对于同一个对象**,这个地址**并不会是不变**的,在每次 **GC 扫描整理到这个对象对象的时候**,如果有回收内存,一般这个地址就会改变。由于我们使用的是 G1,所以并不是每次 GC 都会扫描到这个对象,但是如果地址发生改变,一定是因为发生了 GC ### 2. log4j2 异步日志原理简介 在我们的应用配置中,采用的日志框架是 log4j2,采用的配置是**异步日志配置**。这里简单说一下 Log4j2 异步日志的原理:Log4j2 异步日志基于高性能数据结构 Disruptor,Disruptor 是一个环形 buffer,做了很多性能优化(具体原理可以参考我的另一系列:[高并发数据结构(disruptor)](https://blog.csdn.net/zhxdick/category_6121943.html)),Log4j2 对此的应用如下所示:  简单来说,多线程通过 log4j2 的门面类 `org.apache.logging.log4j.Logger` 进行日志输出,被封装成为一个 `org.apache.logging.log4j.core.LogEvent`,放入到 Disruptor 的环形 buffer 中。在消费端有一个单线程消费这些 LogEvent 写入对应的 Appender,我们这里只有一个 Appender,其配置是: ```
``` 异步日志 logger 配置为(配置 `includeLocation` 为 false,避免每次打印日志需要获取调用堆栈的性能损耗): ```
``` log4j component 额外配置为: **`log4j2.component.properties`**: ``` # 当没有日志的时候,消费线程通过 Block 等待日志事件到来,这样 CPU 占用最少 AsyncLoggerConfig.WaitStrategy=Block ``` ### 3. log4j2 disruptor 的 RingBuffer 的大小 既然是一个环形 Buffer,它的容量是有限的,我们这里没有修改它的大小,走的是默认配置,查看其源码: [`AsyncLoggerConfigDisruptor.java`](https://github.com/apache/logging-log4j2/blob/master/log4j-core/src/main/java/org/apache/logging/log4j/core/async/AsyncLoggerConfigDisruptor.java) ``` public synchronized void start() { //省略其他代码 ringBufferSize = DisruptorUtil.calculateRingBufferSize("AsyncLoggerConfig.RingBufferSize"); disruptor = new Disruptor<>(factory, ringBufferSize, threadFactory, ProducerType.MULTI, waitStrategy); } ``` [`DisruptorUtil.java`](https://github.com/apache/logging-log4j2/blob/master/log4j-core/src/main/java/org/apache/logging/log4j/core/async/DisruptorUtil.java) ``` private static final int RINGBUFFER_MIN_SIZE = 128; private static final int RINGBUFFER_DEFAULT_SIZE = 256 * 1024; private static final int RINGBUFFER_NO_GC_DEFAULT_SIZE = 4 * 1024; static int calculateRingBufferSize(final String propertyName) { //是否启用了 ThreadLocal,如果是则为 4 kB,不是则为 256 kB int ringBufferSize = Constants.ENABLE_THREADLOCALS ? RINGBUFFER_NO_GC_DEFAULT_SIZE : RINGBUFFER_DEFAULT_SIZE; //读取系统变量,以及 log4j2.component.properties 文件获取 propertyName(这里是 AsyncLoggerConfig.RingBufferSize) 这个配置 final String userPreferredRBSize = PropertiesUtil.getProperties().getStringProperty(propertyName, String.valueOf(ringBufferSize)); try { int size = Integer.parseInt(userPreferredRBSize); //如果小于 128 字节则按照 128 字节设置 if (size < RINGBUFFER_MIN_SIZE) { size = RINGBUFFER_MIN_SIZE; LOGGER.warn("Invalid RingBufferSize {}, using minimum size {}.", userPreferredRBSize, RINGBUFFER_MIN_SIZE); } ringBufferSize = size; } catch (final Exception ex) { LOGGER.warn("Invalid RingBufferSize {}, using default size {}.", userPreferredRBSize, ringBufferSize); } //取最近的 2 的 n 次方,因为对于 2 的 n 次方取余等于对于 2^n-1 取与运算,这样更快 return Integers.ceilingNextPowerOfTwo(ringBufferSize); } ``` 如果启用了 ThreadLocal 这种方式生成 LogEvent,每次不新生成的 LogEvent 用之前的,用 ThreadLocal 存储的,这样避免了创建新的 LogEvent。但是考虑下面这种情况: ``` logger.info("{}", someObj); ``` 这样会造成强引用,导致如果线程没有新的日志,这个 `someObj` 一直不能回收。所以**针对 Web 应用,log4j2 默认是不启用 ThreadLocal 的 方式生成 LogEvent**: [`Constants.java`](https://github.com/apache/logging-log4j2/blob/master/log4j-api/src/main/java/org/apache/logging/log4j/util/Constants.java) ``` public static final boolean IS_WEB_APP = PropertiesUtil.getProperties().getBooleanProperty( "log4j2.is.webapp", isClassAvailable("javax.servlet.Servlet")); public static final boolean ENABLE_THREADLOCALS = !IS_WEB_APP && PropertiesUtil.getProperties().getBooleanProperty( "log4j2.enable.threadlocals", true); ``` 由此,可以看出,**我们的 RingBuffer 的大小为 256 kB**。 ### 4. RingBuffer 满了 log4j2 会发生什么? 当 RingBuffer 满了,如果在 `log4j2.component.properties` 配置了 `AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull=false`,则会 Wait(其实是 park) 在 Disruptor 的 produce 方法上,等待消费出下一个可以生产的环形 buffer 槽;默认这个配置为 true,即**所有生产日志的线程尝试获取全局中的同一个锁**(`private final Object queueFullEnqueueLock = new Object();`): [`DisruptorUtil.java`](https://github.com/apache/logging-log4j2/blob/master/log4j-core/src/main/java/org/apache/logging/log4j/core/async/DisruptorUtil.java) ``` static final boolean ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL = PropertiesUtil.getProperties() .getBooleanProperty("AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull", true); ``` ``` private boolean synchronizeEnqueueWhenQueueFull() { return DisruptorUtil.ASYNC_CONFIG_SYNCHRONIZE_ENQUEUE_WHEN_QUEUE_FULL // Background thread must never block && backgroundThreadId != Thread.currentThread().getId(); } private final Object queueFullEnqueueLock = new Object(); private void enqueue(final LogEvent logEvent, final AsyncLoggerConfig asyncLoggerConfig) { //如果 AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull=true,默认就是 true if (synchronizeEnqueueWhenQueueFull()) { synchronized (queueFullEnqueueLock) { disruptor.getRingBuffer().publishEvent(translator, logEvent, asyncLoggerConfig); } } else { //如果 AsyncLoggerConfig.SynchronizeEnqueueWhenQueueFull=false disruptor.getRingBuffer().publishEvent(translator, logEvent, asyncLoggerConfig); } } ``` 默认配置的时候,**异常堆栈和我们 JFR 中看到的一样**,举个例子: ``` "Thread-0" #27 [13136] prio=5 os_prio=0 cpu=0.00ms elapsed=141.08s tid=0x0000022d6f2fbcc0 nid=0x3350 waiting for monitor entry [0x000000399bcfe000] java.lang.Thread.State: BLOCKED (on object monitor) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueue(AsyncLoggerConfigDisruptor.java:375) - waiting to lock
(a java.lang.Object) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueueEvent(AsyncLoggerConfigDisruptor.java:330) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.logInBackgroundThread(AsyncLoggerConfig.java:159) at org.apache.logging.log4j.core.async.EventRoute$1.logMessage(EventRoute.java:46) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.handleQueueFull(AsyncLoggerConfig.java:149) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.logToAsyncDelegate(AsyncLoggerConfig.java:136) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.log(AsyncLoggerConfig.java:116) at org.apache.logging.log4j.core.config.LoggerConfig.log(LoggerConfig.java:460) at org.apache.logging.log4j.core.config.AwaitCompletionReliabilityStrategy.log(AwaitCompletionReliabilityStrategy.java:82) at org.apache.logging.log4j.core.Logger.log(Logger.java:162) at org.apache.logging.log4j.spi.AbstractLogger.tryLogMessage(AbstractLogger.java:2190) at org.apache.logging.log4j.spi.AbstractLogger.logMessageTrackRecursion(AbstractLogger.java:2144) at org.apache.logging.log4j.spi.AbstractLogger.logMessageSafely(AbstractLogger.java:2127) at org.apache.logging.log4j.spi.AbstractLogger.logMessage(AbstractLogger.java:2003) at org.apache.logging.log4j.spi.AbstractLogger.logIfEnabled(AbstractLogger.java:1975) at org.apache.logging.log4j.spi.AbstractLogger.info(AbstractLogger.java:1312) 省略业务方法堆栈 ``` 配置为 false 的时候,堆栈是这个样子的: ``` "Thread-0" #27 [18152] prio=5 os_prio=0 cpu=0.00ms elapsed=5.68s tid=0x000002c1fa120e00 nid=0x46e8 runnable [0x000000eda8efe000] java.lang.Thread.State: TIMED_WAITING (parking) at jdk.internal.misc.Unsafe.park(java.base@17-loom/Native Method) at java.util.concurrent.locks.LockSupport.parkNanos(java.base@17-loom/LockSupport.java:410) at com.lmax.disruptor.MultiProducerSequencer.next(MultiProducerSequencer.java:136) at com.lmax.disruptor.MultiProducerSequencer.next(MultiProducerSequencer.java:105) at com.lmax.disruptor.RingBuffer.publishEvent(RingBuffer.java:524) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueue(AsyncLoggerConfigDisruptor.java:379) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueueEvent(AsyncLoggerConfigDisruptor.java:330) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.logInBackgroundThread(AsyncLoggerConfig.java:159) at org.apache.logging.log4j.core.async.EventRoute$1.logMessage(EventRoute.java:46) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.handleQueueFull(AsyncLoggerConfig.java:149) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.logToAsyncDelegate(AsyncLoggerConfig.java:136) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.log(AsyncLoggerConfig.java:116) at org.apache.logging.log4j.core.config.LoggerConfig.log(LoggerConfig.java:460) at org.apache.logging.log4j.core.config.AwaitCompletionReliabilityStrategy.log(AwaitCompletionReliabilityStrategy.java:82) at org.apache.logging.log4j.core.Logger.log(Logger.java:162) at org.apache.logging.log4j.spi.AbstractLogger.tryLogMessage(AbstractLogger.java:2190) at org.apache.logging.log4j.spi.AbstractLogger.logMessageTrackRecursion(AbstractLogger.java:2144) at org.apache.logging.log4j.spi.AbstractLogger.logMessageSafely(AbstractLogger.java:2127) at org.apache.logging.log4j.spi.AbstractLogger.logMessage(AbstractLogger.java:2003) at org.apache.logging.log4j.spi.AbstractLogger.logIfEnabled(AbstractLogger.java:1975) at org.apache.logging.log4j.spi.AbstractLogger.info(AbstractLogger.java:1312) ``` ### 5. 为何会满,我们的消费线程当时在干啥? 我们来看下当时的消费线程是否有异常,由于**当时硬盘 io 看系统监控并没有异常**,**所以这个线程很大可能是 Runnable 的,不断的在写入日志**。同时,我们知道,写入文件 java 底层基于 native 调用,所以我们查看 JFR 的 native 方法采集。使用事件查看器中的 Method Profiling Sample Native,右键点击,并选择“使用所选类型事件创建新页”:  在创建出来的新页中,按照线程分组查看,查看 Log4j2 的 disruptor 消费线程,可以得出下图:  可以看出:**在出问题的时间段,采集到的写入日志文件的事件数量明显增多很多**,并且,通过堆栈可以看到: ``` "Log4j2-TF-2-AsyncLoggerConfig-1" #26 [23680] daemon prio=5 os_prio=0 cpu=406.25ms elapsed=2.89s tid=0x0000022d6f3d4080 nid=0x5c80 runnable [0x000000399bbfe000] java.lang.Thread.State: RUNNABLE at java.io.FileOutputStream.writeBytes(java.base@17-loom/Native Method) at java.io.FileOutputStream.write(java.base@17-loom/FileOutputStream.java:365) at org.apache.logging.log4j.core.appender.OutputStreamManager.writeToDestination(OutputStreamManager.java:261) - eliminated <0x000000070ee0af40> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager) at org.apache.logging.log4j.core.appender.FileManager.writeToDestination(FileManager.java:272) - eliminated <0x000000070ee0af40> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager) at org.apache.logging.log4j.core.appender.rolling.RollingFileManager.writeToDestination(RollingFileManager.java:236) - eliminated <0x000000070ee0af40> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager) at org.apache.logging.log4j.core.appender.OutputStreamManager.flushBuffer(OutputStreamManager.java:293) - locked <0x000000070ee0af40> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager) at org.apache.logging.log4j.core.appender.OutputStreamManager.flush(OutputStreamManager.java:302) - locked <0x000000070ee0af40> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager) at org.apache.logging.log4j.core.appender.AbstractOutputStreamAppender.directEncodeEvent(AbstractOutputStreamAppender.java:199) at org.apache.logging.log4j.core.appender.AbstractOutputStreamAppender.tryAppend(AbstractOutputStreamAppender.java:190) at org.apache.logging.log4j.core.appender.AbstractOutputStreamAppender.append(AbstractOutputStreamAppender.java:181) at org.apache.logging.log4j.core.appender.RollingFileAppender.append(RollingFileAppender.java:312) at org.apache.logging.log4j.core.config.AppenderControl.tryCallAppender(AppenderControl.java:156) at org.apache.logging.log4j.core.config.AppenderControl.callAppender0(AppenderControl.java:129) at org.apache.logging.log4j.core.config.AppenderControl.callAppenderPreventRecursion(AppenderControl.java:120) at org.apache.logging.log4j.core.config.AppenderControl.callAppender(AppenderControl.java:84) at org.apache.logging.log4j.core.config.LoggerConfig.callAppenders(LoggerConfig.java:543) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.callAppenders(AsyncLoggerConfig.java:127) at org.apache.logging.log4j.core.config.LoggerConfig.processLogEvent(LoggerConfig.java:502) at org.apache.logging.log4j.core.config.LoggerConfig.log(LoggerConfig.java:485) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.log(AsyncLoggerConfig.java:121) at org.apache.logging.log4j.core.async.AsyncLoggerConfig.logToAsyncLoggerConfigsOnCurrentThread(AsyncLoggerConfig.java:169) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.onEvent(AsyncLoggerConfigDisruptor.java:111) at org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor$Log4jEventWrapperHandler.onEvent(AsyncLoggerConfigDisruptor.java:97) at com.lmax.disruptor.BatchEventProcessor.processEvents(BatchEventProcessor.java:168) at com.lmax.disruptor.BatchEventProcessor.run(BatchEventProcessor.java:125) at java.lang.Thread.run(java.base@17-loom/Thread.java:1521) ``` log4j2 调用了很多次 **flush**, JFR 显示采集到的事件,每次都调用了 **flush**。每次调用 flush,都会造成文件真正写的 native 调用。而消费慢的原因,其实就是这种 native 调用太多,系统写入不过来了。 ## 问题解决 我们可以通过以下四个方向解决这个问题: 1. 减少日志输出,精简日志,这是比较基础的方式,也是比较简单的方式,但是身为一个技术人,我们不能满足于此 2. 增加硬盘 io,这个也是比较基础简单的解决方式 3. 我们是否可以减少这个 flush 呢?答案是可以的,**我们可以配置 Appender 的 `immediateFlush` 为 false**。 4. 增加监控,针对堆栈包含 `org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueue` 的 java monitor block 事件进行监控,**如果发现时间过长或者数量很多的事件则报警或者重建进程** ### 1. 配置 Appender 的 `immediateFlush` 为 false **我们可以配置 Appender 的 `immediateFlush` 为 false**,例如: ```
``` 这里的原理对应源码: [`AbstractOutputStreamAppender.java`](https://github.com/apache/logging-log4j2/blob/master/log4j-core/src/main/java/org/apache/logging/log4j/core/appender/AbstractOutputStreamAppender.java) ``` protected void directEncodeEvent(final LogEvent event) { getLayout().encode(event, manager); //如果配置了 immdiateFlush (默认为 true)或者当前事件是 EndOfBatch if (this.immediateFlush || event.isEndOfBatch()) { manager.flush(); } } ``` 那么对于 Log4j2 Disruptor 异步日志来说,什么时候 `LogEvent` 是 `EndOfBatch` 呢?是在消费到的 index 等于生产发布到的最大 index 的时候,这也是比较符合性能设计考虑,即在没有消费完的时候,尽可能地不 flush,消费完当前所有的时候再去 flush: [`BatchEventProcessor.java`](https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/BatchEventProcessor.java) ``` private void processEvents() { T event = null; long nextSequence = sequence.get() + 1L; while (true) { try { final long availableSequence = sequenceBarrier.waitFor(nextSequence); if (batchStartAware != null) { batchStartAware.onBatchStart(availableSequence - nextSequence + 1); } while (nextSequence <= availableSequence) { event = dataProvider.get(nextSequence); //这里 nextSequence == availableSequence 就是 EndOfBatch eventHandler.onEvent(event, nextSequence, nextSequence == availableSequence); nextSequence++; } sequence.set(availableSequence); } catch (final TimeoutException e) { notifyTimeout(sequence.get()); } catch (final AlertException ex) { if (running.get() != RUNNING) { break; } } catch (final Throwable ex) { exceptionHandler.handleEventException(ex, nextSequence, event); sequence.set(nextSequence); nextSequence++; } } } ``` ### 2. 增加基于 JFR 事件监控 > 这个需要 Java 14 以上的版本 ``` Configuration config = Configuration.getConfiguration("default"); //设置监控的锁 block 时间超过多少就会采集 config.getSettings().put("jdk.JavaMonitorEnter#threshold", "1s"); try (var es = new RecordingStream(config)) { es.onEvent("jdk.JavaMonitorEnter", recordedEvent -> { //如果堆栈包含我们关注的,则报警 if (recordedEvent.getStackTrace().getFrames().stream().anyMatch(recordedFrame -> recordedFrame.toString().contains("org.apache.logging.log4j.core.async.AsyncLoggerConfigDisruptor.enqueue"))) { System.out.println("Alarm: " + recordedEvent); } }); es.start(); } ``` > **微信搜索“我的编程喵”关注公众号,每日一刷,轻松提升技术,斩获各种offer**: >