CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用、灵活、高性能的分布式 ID 生成器
介绍
CosId 旨在提供通用、灵活、高性能的分布式系统 ID 生成器。 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS 性能:409W/s JMH 基准测试)、RedisIdGenerator (单机 TPS 性能(步长 1000):3687W+/s JMH 基准测试)。
更新内容(1.0.0) 🎉 🎉 🎉
- 增强:支持自定义配置 ClockBackwardsSynchronizer(spring-boot-starter-cosid)。
- 增强:优化 SnowflakeIdProperties 配置体验 (spring-boot-starter-cosid)。
- 变更:重命名 LocalMachineState 为 MachineStateStorage。
- 增强:支持自定义 IdDefinition 来开启 ClockSyncSnowflakeId。
- 增强:优化自定义配置 epoch 。
- 增强:支持配置 RedisIdGenerator#offset ,来设置分布式ID起始值。
- 新增:新增 SnowflakeFriendlyId,生成更具可读性的 SnowflakeIdState。
- 增强:自定义配置 Redis#timeout。
SnowflakeId
SnowflakeId 使用
Long
(64 bits) 位分区来生成 ID 的一种分布式 ID 算法。
通用的位分配方案为:timestamp
(41 bits) +machineId
(10 bits) +sequence
(12 bits) = 63 bits 。
- 41 位
timestamp
= (1L<<41)/(1000/3600/365) 约可以存储 69 年的时间戳,即可以使用的绝对时间为EPOCH
+ 69 年,一般我们需要自定义EPOCH
为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。 - 10 位
machineId
= (1L<<10) = 1024 即相同业务可以部署 1024 个副本 (在 Kubernetes 概念里没有主从副本之分,这里直接沿用 Kubernetes 的定义) 实例,一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。 - 12 位
sequence
= (1L<<12) * 1000 = 4096000 即单机每秒可生成约 409W 的 ID,全局同业务集群可产生 4096000*1024=419430W=41.9亿(TPS)。
从 SnowflakeId 设计上可以看出:
-
timestamp
在高位,所以 SnowflakeId 是本机单调递增的,受全局时钟同步影响 SnowflakeId 是全局趋势递增的。 - SnowflakeId 不对任何第三方中间件有强依赖关系,并且性能也非常高。
- 位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
- 强依赖本机时钟,潜在的时钟回拨问题会导致 ID 重复。
-
machineId
需要手动设置,实际部署时如果采用手动分配machineId
,会非常低效。
CosId-SnowflakeId 主要解决 SnowflakeId 俩大问题:机器号分配问题、时钟回拨问题。 并且提供更加友好、灵活的使用体验。
MachineIdDistributor (MachineId 分配器)
目前 CosId 提供了以下三种
MachineId
分配器。
ManualMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: manual
manual:
machine-id: 0
手动分配
MachineId
StatefulSetMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: stateful_set
使用
Kubernetes
的StatefulSet
提供的稳定的标识 ID 作为机器号。
RedisMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: redis
使用
Redis
作为机器号的分发存储。
ClockBackwardsSynchronizer (时钟回拨同步器)
cosid:
snowflake:
clock-backwards:
spin-threshold: 10
broken-threshold: 2000
默认提供的 DefaultClockBackwardsSynchronizer
时钟回拨同步器使用主动等待同步策略,spinThreshold
(默认值 10 毫秒) 用于设置自旋等待阈值, 当大于spinThreshold
时使用线程休眠等待时钟同步,如果超过brokenThreshold
(默认值 2 秒)时会直接抛出ClockTooManyBackwardsException
异常。
MachineStateStorage (机器状态存储)
public class MachineState {
public static final MachineState NOT_FOUND = of(-1, -1);
private final int machineId;
private final long lastTimeStamp;
public MachineState(int machineId, long lastTimeStamp) {
this.machineId = machineId;
this.lastTimeStamp = lastTimeStamp;
}
public int getMachineId() {
return machineId;
}
public long getLastTimeStamp() {
return lastTimeStamp;
}
public static MachineState of(int machineId, long lastStamp) {
return new MachineState(machineId, lastStamp);
}
}
cosid:
snowflake:
machine:
state-storage:
local:
state-location: ./cosid-machine-state/
默认提供的 LocalMachineStateStorage
本地机器状态存储,使用本地文件存储机器号、最近一次时间戳,用作 MachineState
缓存。
ClockSyncSnowflakeId (主动时钟同步 SnowflakeId
)
cosid:
snowflake:
share:
clock-sync: true
默认 SnowflakeId
当发生时钟回拨时会直接抛出 ClockBackwardsException
异常,而使用 ClockSyncSnowflakeId
会使用 ClockBackwardsSynchronizer
主动等待时钟同步来重新生成 ID,提供更加友好的使用体验。
SafeJavaScriptSnowflakeId (JavaScript
安全的 SnowflakeId
)
SnowflakeId snowflakeId=SafeJavaScriptSnowflakeId.ofMillisecond(1);
JavaScript
的 Number.MAX_SAFE_INTEGER
只有 53 位,如果直接将 63 位的 SnowflakeId
返回给前端,那么会值溢出的情况,通常我们可以将SnowflakeId
转换为 String 类型或者自定义 SnowflakeId
位分配来缩短 SnowflakeId
的位数 使 ID
提供给前端时不溢出。
SnowflakeFriendlyId (可以将 SnowflakeId
解析成可读性更好的 SnowflakeIdState
)
cosid:
snowflake:
share:
friendly: true
public class SnowflakeIdState {
private final long id;
private final int machineId;
private final long sequence;
private final LocalDateTime timestamp;
/**
* {@link #timestamp}-{@link #machineId}-{@link #sequence}
*/
private final String friendlyId;
}
public interface SnowflakeFriendlyId extends SnowflakeId {
SnowflakeIdState friendlyId(long id);
SnowflakeIdState ofFriendlyId(String friendlyId);
default SnowflakeIdState friendlyId() {
long id = generate();
return friendlyId(id);
}
}
SnowflakeFriendlyId snowflakeFriendlyId = new DefaultSnowflakeFriendlyId(snowflakeId);
SnowflakeIdState idState = snowflakeFriendlyId.friendlyId();
idState.getFriendlyId(); //20210623131730192-1-0
RedisIdGenerator
cosid:
redis:
enabled: true
share:
offset: 0
step: 100
provider:
bizA:
offset: 10000
step: 100
bizB:
offset: 10000
step: 100
RedisIdGenerator
步长设置为 1 时(每次生成ID
都需要执行一次 Redis 网络 IO 请求)TPS 性能约为 21W/s (JMH 基准测试),如果在部分场景下我们对 ID 生成的 TPS 性能有更高的要求,那么可以选择使用增加每次ID
分发步长来降低网络 IO 请求频次,提高 IdGenerator
性能(比如增加步长为 1000,性能可提升到 3545W+/s JMH 基准测试)。
IdGeneratorProvider
cosid:
snowflake:
provider:
bizA:
# epoch:
# timestamp-bit:
sequence-bit: 12
bizB:
# epoch:
# timestamp-bit:
sequence-bit: 12
IdGenerator idGenerator = idGeneratorProvider.get("bizA");
在实际使用中我们一般不会所有业务服务使用同一个 IdGenerator
,而是不同的业务使用不同的 IdGenerator
,那么 IdGeneratorProvider
就是为了解决这个问题而存在的,他是 IdGenerator
的容器,可以通过业务名来获取相应的 IdGenerator
。
Examples
安装
Gradle
Kotlin DSL
val cosidVersion = "1.0.0";
implementation("me.ahoo.cosid:spring-boot-starter-cosid:${cosidVersion}")
Maven
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>demo</artifactId>
<properties>
<cosid.version>1.0.0</cosid.version>
</properties>
<dependencies>
<dependency>
<groupId>me.ahoo.cosid</groupId>
<artifactId>spring-boot-starter-cosid</artifactId>
<version>${cosid.version}</version>
</dependency>
</dependencies>
</project>
application.yaml
cosid:
namespace: ${spring.application.name}
snowflake:
enabled: true
# epoch: 1577203200000
clock-backwards:
spin-threshold: 10
broken-threshold: 2000
machine:
# stable: true
# machine-bit: 10
# instance-id: ${HOSTNAME}
distributor:
type: redis
# manual:
# machine-id: 0
state-storage:
local:
state-location: ./cosid-machine-state/
share:
clock-sync: true
friendly: true
provider:
bizA:
# timestamp-bit:
sequence-bit: 12
bizB:
# timestamp-bit:
sequence-bit: 12
# redis:
# enabled: false
# share:
# offset: 0
# step: 100
# provider:
# bizA:
# offset: 10000
# step: 100
# bizB:
# offset: 10000
# step: 100
JMH-Benchmark
SnowflakeId
Benchmark Mode Cnt Score Error Units
SnowflakeIdBenchmark.millisecondSnowflakeId_generate thrpt 4093924.313 ops/s
SnowflakeIdBenchmark.safeJsMillisecondSnowflakeId_generate thrpt 511542.292 ops/s
SnowflakeIdBenchmark.safeJsSecondSnowflakeId_generate thrpt 511939.629 ops/s
SnowflakeIdBenchmark.secondSnowflakeId_generate thrpt 4204761.870 ops/s
RedisIdGenerator
gradle cosid-redis:jmh
Benchmark Mode Cnt Score Error Units
RedisIdGeneratorBenchmark.step_1 thrpt 25 220218.848 ± 2070.786 ops/s
RedisIdGeneratorBenchmark.step_100 thrpt 25 3605422.967 ± 13479.405 ops/s
RedisIdGeneratorBenchmark.step_1000 thrpt 25 36874696.252 ± 357214.292 ops/s

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
如何写出完美的接口:接口规范定义、接口管理工具推荐
无规矩不成方圆,为了开发人员间更好的配合,我特意整理了这么一篇文档供大家参考学习,如有意见、见解,请在评论区留言探讨。 接口规范说起来大,其实也就那么几个部分,接口规范、接口管理工具、接口文档编写、开发文档编写。 接口规范定义 一、协议规范 为了确保不同系统/模块间的数据交互,需要事先约定好通讯协议,如:TCP、HTTP、HTTPS协议。为了确保数据交互安全,建议使用HTTPS协议。 二、接口路径规范 作为接口路径,为了方便清晰的区分来自不同的系统,可以采用不同系统/模块名作为接口路径前缀。 格式规范如下: 支付模块 /pay/xx 订单模块 /order/xx 三、版本控制规范 为了便于后期接口的升级和维护,建议在接口路径中加入版本号,便于管理,实现接口多版本的可维护性。如果你细心留意过的话,你会发现好多框架对外提供的API接口中(如:Eureka),都带有版本号的。如:接口路径中添加类似"v1"、"v2"等版本号。 格式规范如下: /xx/v1/xx 更新版本后可以使用v2、v3等、依次递加。 四、接口命名规范 和Java命名规范一样,好的、统一的接口命名规范,不仅可以增强其可...
-
下一篇
go-carbon 1.4.0 版本发布,新增获取世纪和季度开始和结束时间方法
carbon 是一个轻量级、语义化、对开发者友好的Golang时间处理库,支持链式调用、农历和gorm、xorm等主流orm。 如果您觉得不错,请给个 star 吧 github:github.com/golang-module/carbon gitee:gitee.com/go-package/carbon 更新日志 新增 StartOfCentury()方法获取所在世纪的开始时间 新增 EndOfCentury()方法获取所在世纪的结束时间 新增 StartOfQuarter()方法获取所在季度的开始时间 新增 EndOfQuarter()方法获取所在季度的结束时间 StartOfWeek()和 EndOfWeek()方法支持自定义一周开始时间 NewCarbon()方法改名为 New()
相关文章
文章评论
共有0条评论来说两句吧...