首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://blog.51cto.com/u_15242250/2842417

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

MapReduce深入源码分析job提交的整个过程

/** *Submitthejobtotheclusterandwaitforittofinish. *@paramverboseprinttheprogresstotheuser *@returntrueifthejobsucceeded *@throwsIOExceptionthrownifthecommunicationwiththe *JobTrackerislost */ publicbooleanwaitForCompletion(booleanverbose )throwsIOException,InterruptedException, ClassNotFoundException{ if(state==JobState.DEFINE){ submit();//提交作业 } if(verbose){ monitorAndPrintJob(); }else{ //getthecompletionpollintervalfromtheclient. intcompletionPollIntervalMillis= Job.getCompletionPollInterval(...

优达学城深度学习之三(下)——卷积神经网络

一、One—Hot编码 计算机在表示多结果的分类时,使用One-Hot编码是比较常见的处理方式。即每个对象都有对应的列。 二、最大似然率 下面是两幅图像,比较两幅图像,试通过概率的方法来讨论一下为什么右边的模型会更好。 假设第一幅图像的每个点是对应颜色的概率为下图: 如果假设点的颜色是相互独立的,则整个图表的概率为相互乘积:0.6*0.1*0.7*0.2=0.0084,低于1% 第二个图概率如下图所示: 则整个图表的概率为相互乘积:0.6*0.8*0.9*0.7=0.3024约等于30%。由此可知,右边的模型更靠谱。 如果我们可以通过一种方式最大化这个概率,则这种方法叫最大似然法。 三、最大化概率 3.1 交叉熵1:损失函数 对他们每个点的概率进行对数运算,然把他们的相反数进行求和,我们称之为交叉熵。好的模型交叉熵比较低,坏的模型交叉熵会比较高。如下图的两个模型。 我们遇到了某种规律,概率和误差函数之间肯定有一定的联系,这种联系叫做交叉熵。这个概念在很多领域都非常流行,包括机器学习领域。下图表示三个门后面有礼物的概率,分别为0.8、0.7、0.1,当后面有礼物时,yi=1,所以交叉熵如...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。

用户登录
用户注册