About the Mean Shift
Mean Shift算法,一般是指一个迭代的过程。即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束。 meanshift可以被用来做目标跟踪和图像分割。 参考《Mean Shift:A Robust Approach Toward Feature Space Analysis》 公式就不写了。meanshift其实原理挺简单的,就是随便找个种子点,然后开始在该种子点邻域内寻找其目标点的密度中心,那么种子点到密度中心点的向量方向就是密度上升方向了,更新密度中心点为种子点,迭代,直到到达截止条件(opencv里的meanshift把截止条件定为迭代次数和截止精度,当然这两者可以随意组合)。 改进的meanshift使用了核函数(区别种子点附近和远处点的权重)和权重系数(区别不同样本的权重),但基本原理还是一样的。 这篇论文很长,在实现该方法的同时,同时系统地证明了meanshift算法是沿着最大密度梯度方向搜索的,并且随着多次迭代,种子点趋于稳定。 其实在上面讲述的时候去掉了一个背景,就是所有样本都采样自...


