华为预测服务的构建原理及模型训练方法
预测服务基于华为分析服务(Analytics Kit)上报的用户行为数据和属性,结合机器学习技术,实现特定目标人群的精准预测。针对预测生成的细分受众群体,开展和优化相关运营举措,如通过A/B测试评估运营活动效果、远程配置特定受众群体的专属套餐等,可有效帮助产品提高用户留存,增加转化。 使用预测服务前,需要先集成华为分析服务的SDK,这样系统才可以顺利开展流失、付费、复购以及自定义预测任务。在详情界面可以查看相关预测人群的高中低概率对应人群数量,及其相应的属性分布(比如详情页的高概率流失人群,表示该人群在未来7日内有较高概率流失,您可以通过相关卡片,观察其行为特点并制定针对性运营计划)。 预测任务和预测详情界面如下所示: *数据为模拟 预测模型构建流程 在构建预测模型的时候,首先是确定我们要预测什么,即确立预测的统计口径,然后根据统计口径围绕用户特点寻找对应相关的特征,通过清洗和采样得到数据集。我们把数据集二八分得到训练集和验证集,在线下进行不断实验找到最优特征和参数,最后根据相关数据在线上调度训练预测任务。 具体流程图如下所示: 特征、模型选择和调优 特征探索 项目初期,我们分析数据,...
