SparrowRecsys | 如何搭建一个超有成就感的推荐系统?
转眼就开工了,7 天的假期,刷刷抖音,说走就走了。 说到抖音,就不得不提它的推荐系统,太 NB 了。刷了啥,立刻记住你的偏好,推荐相似内容,一不小心 2 小时就过去了,让人欲罢不能,要么日活 6 亿呢。 其实“推荐系统”从没像现在这样,影响着我们的生活。除了抖音、快手这类短视频,还有网购时,天猫、京东会为你推荐商品;想看看资讯,头条、知乎会为你准备感兴趣的新闻等等。 而驱动这些巨头进行推荐服务的,都是基于深度学习的推荐模型。 想起 2019 年阿里的千人千面系统,促成了天猫“双 11” 2684 亿成交额。假设通过改进商品推荐功能,使平台整体的转化率提升 1%,就能在 2684 亿成交额的基础上,再增加 26.84 亿。这就是推荐工程师的最牛的地方,也是为啥人能拿百万年薪的原因。 但在一个成熟的推荐系统上,找到提升的突破点并不容易——不能满足于协同过滤、矩阵分解这类传统方法,而要建立起完整的“深度学习推荐系统”知识体系,加深对深度学习模型的理解,以及大数据平台的熟悉程度,才能实现整体效果上的优化。 所以春节假期除了刷抖音,我又重新看了看《深度学习推荐系统》这个专栏,2 刷有...




