遗传算法的基本概念和实现,附Java实现案例!
基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法。该算法反映了自然选择的过程,即最适者被选定繁殖,并产生下一代。本文简要地介绍了遗传算法的基本概念和实现,希望能为读者展示启发式搜索的魅力。_
如上图(左)所示,遗传算法的个体由多条染色体组成,每条染色体由多个基因组成。上图(右)展示了染色体分割和组合的方式。_
遗传算法的概念
自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的特性,并且这些特性将添加到下一代中。如果父母具有更好的适应性,那么它们的后代将更易于存活。迭代地进行该自然选择的过程,最终,我们将得到由最适应环境的个体组成的一代。
这一概念可以被应用于搜索问题中。我们考虑一个问题的诸多解决方案,并从中搜寻出最佳方案。
遗传算法含以下五步:
-
初始化
-
个体评价(计算适应度函数)
-
选择运算
-
交叉运算
-
变异运算
初始化
该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。
个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。
在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中。
种群、染色体和基因
个体评价(计算适应度函数)
个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。
选择运算
选择运算的目的是选出适应性最好的个体,并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。
交叉运算
交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。
举个例子,下图的交叉点为 3:
父母间在交叉点之前交换基因,从而产生了后代。
父母间交换基因,然后产生的新后代被添加到种群中。
变异运算
在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。
变异运算前后
变异运算可用于保持种群内的多样性,并防止过早收敛。
终止
在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。
案例实现
种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。
这一迭代过程的伪代码:
START Generate the initial population Compute fitness REPEAT Selection Crossover Mutation Compute fitness UNTIL population has converged STOP
Java 中的实例实现
以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。
如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望最大化适应度,并提供适应度达到最大的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度最低的个体被新的,适应度最高的后代所替代。
import java.util.Random; /** * * @author Vijini */ //Main class public class SimpleDemoGA { Population population = new Population(); Individual fittest; Individual secondFittest; int generationCount = 0; public static void main(String[] args) { Random rn = new Random(); SimpleDemoGA demo = new SimpleDemoGA(); //Initialize population demo.population.initializePopulation(10); //Calculate fitness of each individual demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); //While population gets an individual with maximum fitness while (demo.population.fittest < 5) { ++demo.generationCount; //Do selection demo.selection(); //Do crossover demo.crossover(); //Do mutation under a random probability if (rn.nextInt()%7 < 5) { demo.mutation(); } //Add fittest offspring to population demo.addFittestOffspring(); //Calculate new fitness value demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); } System.out.println("\nSolution found in generation " + demo.generationCount); System.out.println("Fitness: "+demo.population.getFittest().fitness); System.out.print("Genes: "); for (int i = 0; i < 5; i++) { System.out.print(demo.population.getFittest().genes[i]); } System.out.println(""); } //Selection void selection() { //Select the most fittest individual fittest = population.getFittest(); //Select the second most fittest individual secondFittest = population.getSecondFittest(); } //Crossover void crossover() { Random rn = new Random(); //Select a random crossover point int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); //Swap values among parents for (int i = 0; i < crossOverPoint; i++) { int temp = fittest.genes[i]; fittest.genes[i] = secondFittest.genes[i]; secondFittest.genes[i] = temp; } } //Mutation void mutation() { Random rn = new Random(); //Select a random mutation point int mutationPoint = rn.nextInt(population.individuals[0].geneLength); //Flip values at the mutation point if (fittest.genes[mutationPoint] == 0) { fittest.genes[mutationPoint] = 1; } else { fittest.genes[mutationPoint] = 0; } mutationPoint = rn.nextInt(population.individuals[0].geneLength); if (secondFittest.genes[mutationPoint] == 0) { secondFittest.genes[mutationPoint] = 1; } else { secondFittest.genes[mutationPoint] = 0; } } //Get fittest offspring Individual getFittestOffspring() { if (fittest.fitness > secondFittest.fitness) { return fittest; } return secondFittest; } //Replace least fittest individual from most fittest offspring void addFittestOffspring() { //Update fitness values of offspring fittest.calcFitness(); secondFittest.calcFitness(); //Get index of least fit individual int leastFittestIndex = population.getLeastFittestIndex(); //Replace least fittest individual from most fittest offspring population.individuals[leastFittestIndex] = getFittestOffspring(); } } //Individual class class Individual { int fitness = 0; int[] genes = new int[5]; int geneLength = 5; public Individual() { Random rn = new Random(); //Set genes randomly for each individual for (int i = 0; i < genes.length; i++) { genes[i] = rn.nextInt() % 2; } fitness = 0; } //Calculate fitness public void calcFitness() { fitness = 0; for (int i = 0; i < 5; i++) { if (genes[i] == 1) { ++fitness; } } } } //Population class class Population { int popSize = 10; Individual[] individuals = new Individual[10]; int fittest = 0; //Initialize population public void initializePopulation(int size) { for (int i = 0; i < individuals.length; i++) { individuals[i] = new Individual(); } } //Get the fittest individual public Individual getFittest() { int maxFit = Integer.MIN_VALUE; for (int i = 0; i < individuals.length; i++) { if (maxFit <= individuals[i].fitness) { maxFit = i; } } fittest = individuals[maxFit].fitness; return individuals[maxFit]; } //Get the second most fittest individual public Individual getSecondFittest() { int maxFit1 = 0; int maxFit2 = 0; for (int i = 0; i < individuals.length; i++) { if (individuals[i].fitness > individuals[maxFit1].fitness) { maxFit2 = maxFit1; maxFit1 = i; } else if (individuals[i].fitness > individuals[maxFit2].fitness) { maxFit2 = i; } } return individuals[maxFit2]; } //Get index of least fittest individual public int getLeastFittestIndex() { int minFit = 0; for (int i = 0; i < individuals.length; i++) { if (minFit >= individuals[i].fitness) { minFit = i; } } return minFit; } //Calculate fitness of each individual public void calculateFitness() { for (int i = 0; i < individuals.length; i++) { individuals[i].calcFitness(); } getFittest(); } }
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载 作者:MallawaarachchiFollow 原文:https://medium.com/towards-data-science/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3 机器之心编译,参与:俞云开、蒋思源
近期热文推荐:
1.终于靠开源项目弄到 IntelliJ IDEA 激活码了,真香!
2.我用 Java 8 写了一段逻辑,同事直呼看不懂,你试试看。。
觉得不错,别忘了随手点赞+转发哦!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
何时用多线程?多线程需要加锁吗?线程数多少最合理?
爱生活,爱编码,微信搜一搜【架构技术专栏】关注这个喜欢分享的地方。 本文 架构技术专栏 已收录,有各种视频、资料以及技术文章。 一、什么时候应该使用多线程? 今天看到一个问题,突然有感而发,想聊下这个话题。 不知道大家有没有想过这个问题,就是什么时候我该使用多线程呢?使用多线程就一定会提升系统性能吗? 1、其实是否应该使用多线程在很大程度上取决于应用程序的类型。 计算密集型(如纯数学运算) 的, 并受CPU 功能的制约, 则只有多CPU(或者多个内核) 机器能够从更多的线程中受益, 单CPU下, 多线程不会带来任何性能上的提升, 反而有可能由于线程切换等额外开销而导致性能下降 IO密集型的,当我的应用必须等待缓慢的资源(如网络连接或者数据库连接上返回数据)时,那么多线程会让系统的CPU充分的利用起来,当一个线程阻塞挂起时,另一个线程可以继续使用CPU资源。 其实,就是多线程不会增加CPU的处理能,而是能够更加充分地利用CPU资源。 由于同一进程的多个线程是共享同一片内存资源的,在带来方便的同时也必然会增加其复杂性,如何保证多线程访问数据的一致性问题等。而多线程属于编程中容易翻车的地方。...
- 下一篇
“非主流”的纯前端性能优化
链接:https://mp.weixin.qq.com/s/N3vDWhT6oCZgYi2Am5GP7A 作者:ChenJing 性能优化一直是前端研究的主要课题之一,因为不仅直接影响用户体验,对于商业性公司,网页性能的优劣更关乎流量变现效率的高低。例如 DoubleClick by Google 发现: 如果页面加载时间超过 3 秒,53% 的用户会选择终止当前操作并离开 网站加载时间在 5 秒内的发布商比 19 秒内的广告收入至少多出一倍 同时,性能优化学习的不断深入,也同样是一个专业前端工程师的进阶之路。不过,随着 HTTP/2 和 SSR(服务端渲染)的不断普及,早期雅虎 35 条中的很多内容似乎已经显得有些过时,不少纯前端的细节优化方案也逐渐被认为微不足道。 但是,今天,我们依然想谈几个容易被很多前端工程师忽视,但却卓有成效的纯前端优化细节(技术框架以 Vue 为主)。 一、self 这里想说的 self 并不是WindowOrWorkerGlobalScope 下的 self,或者说 window 的替身,而是const self = this 中的 self,或者说对象缓...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7,CentOS8安装Elasticsearch6.8.6
- MySQL8.0.19开启GTID主从同步CentOS8
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS8安装Docker,最新的服务器搭配容器使用
- Hadoop3单机部署,实现最简伪集群
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- SpringBoot2整合Redis,开启缓存,提高访问速度
- SpringBoot2全家桶,快速入门学习开发网站教程
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- Linux系统CentOS6、CentOS7手动修改IP地址