X射线图像中的目标检测
点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达 1 动机和背景 每天有数百万人乘坐地铁、民航飞机等公共交通工具,因此行李的安全检测将保护公共场所免受恐怖主义等影响,在安全防范中扮演着重要角色。但随着城市人口的增长,使用公共交通工具的人数逐渐增多,在获得便利的同时带来很大的不安全性,因此设计一种可以帮助加快安全检查过程并提高其效率的系统非常重要。卷积神经网络等深度学习算法不断发展,也在各种不同领域(例如机器翻译和图像处理)发挥了很大作用,而目标检测作为一项基本的计算机视觉问题,能为图像和视频理解提供有价值的信息,并与图像分类、机器人技术、人脸识别和自动驾驶等相关。在本项目中,我们将一起探索几个基于深度学习的目标检测模型,以对X射线图像中的违禁物体进行定位和分类为基础,并比较这几个模型在不同指标上的表现。 针对该(目标检测)领域已有的研究,R. Girshick等[29]的基于区域的目标检测网络(称为R-CNN),使用选择性搜索算法在感兴趣物体周围寻找边界框,但这种模型训练很慢;几个月后,R. Girshick等 [30]通过改进选择性搜索算法改进了R-CNN模型...