大数据网管运营数据存储模式研究
云栖号资讯:【点击查看更多行业资讯】
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!
随着近两年通信流量业务开展得如火如荼,更多的用户上网行为的数据分析需求猛增,而处理这类数据需要大量的写入处理,而且字段不固定,传统的关系型数据库已无法满足需求,急需多节点的分布式大数据集群来解决数据处理及存储问题。
本研究构建了一套大数据采集、存储体系,将系统分为采集层、ODS、DW、DM等四层,分别完成海量数据的采集、汇总、处理、生成价值数据过程中的不同环节。其中,采集层负责原始数据的采集,ODS层负责统一不同系统间的业务内容,对部分海量数据的非结构化数据进行转换。DW层是以空间换时间的一层,要形成大量的基础Cube,基础常用业务粒度的数据。实现统一的KPI过程,是ODS层指标转换的基础。DM层主要是面向业务的组合,面向分析的Cube变换,面向挖掘的数据变换。
数据分类存储
在数据存储过程中,按照数据价值和生命周期管理原则(热数据对存储性能要求高,随着数据生命周期的变化,数据价值降低,逐渐向一般性能存储迁移,其中数据价值的参考项包括时效性、访问频率、价值密度、业务意义等),可以将不同数据分类存储,制定不同的存储方式及存储周期。
对于采集层的原始数据,将采集层的数据加载到基础数据缓存,为数据整合提供缓存,其中大数据1~3天,传统数据7天。对于ODS层数据,通过内存库关联与整合,ETL为ODM提供完整、准确的数据。该层存储周期:大数据3个月,传统数据1年。对于DW层数据,通过基于数据模型的并行计算域数据库计算,提供多用途的轻度汇总,该层数据类型主要为按维度、事实组织的数据,存储周期为3年。
数据处理及存储过程采用了分布式架构,其中有两项关键技术—HDFS和MapReduce,应用这两项技术能给系统带来如下技术优势。
Hadoop分布式文件系统适合运行在通用硬件(x86服务器)上的分布式文件系统,HDFS对外开放文件命名空间并允许用户数据以文件形式存储;MapReduce能自动将一个作业(Job)待处理的大数据划分为很多个数据块,每个数据块对应于一个计算任务(Task),并自动调度计算节点来处理相应的数据块。作业和任务调度功能主要负责分配和调度计算节点(Map节点或Reduce节点),同时负责监控这些节点的执行状态,并负责Map节点执行的同步控制。
具体应用案例
通过该系统的推进落地,吉林省完成了省内大数据处理平台—数据共享平台的建设,该系统日均处理数据超过10T左右,并为吉林省内多个上层应用提供了数据支撑,比如互联网端到端系统能以四大类关键业务(网页浏览类、视频类、即时通信类、应用下载类)进行端到端质量分析,通过五元五阶分析定位方法,能够定位质差业务SP、质差小区、质差核心网网元、质差终端等,并找出业务问题原因;CSFB业务质量分析系统能实现全流程质量概况分析、全流程质差网元问题定位分析;客户满意度画像从覆盖质量、网络感知等网络指标判断用户满意度,做到在被投诉之前发现问题。
这些应用在吉林省内日常的网络问题分析、优化,业务预测、发展支撑等方面发挥着有力的数据支撑作用。
【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
使用OpenCV实现道路车辆计数
点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达 今天,我们将一起探讨如何基于计算机视觉实现道路交通计数。 在本教程中,我们将仅使用Python和OpenCV,并借助背景减除算法非常简单地进行运动检测。 我们将从以下四个方面进行介绍: 1. 用于物体检测的背景减法算法主要思想。 2. OpenCV图像过滤器。 3. 利用轮廓检测物体。 4. 建立进一步数据处理的结构。 背景扣除算法 有许多不同的背景扣除算法,但是它们的主要思想都很简单。 假设有一个房间的视频,在某些帧上没有人和宠物,那么此时的视频基本为静态的,我们将其称为背景(background_layer)。因此要获取在视频上移动的对象,我们只需要:用当前帧减去背景即可。 由于光照变化,人为移动物体,或者始终存在移动的人和宠物,我们将无法获得静态帧。在这种情况下,我们从视频中选出一些图像帧,如果绝大多数图像帧中都具有某个相同的像素点,则此将像素作为background_layer中的一部分。 我们将使用MOG算法进行背景扣除 原始帧 代码如下所示: import osimport loggingimport...
- 下一篇
AI让酒店更懂你
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! ModiHost是一套面向酒店客户的新平台,旨在利用人工智能技术,带来更强大的酒店管理系统,高度强调为住客提供个性化体验。以此为基础,酒店又能借此增加收入并提升品牌忠诚度。内部人士表示,这套平台已经探索出运营密码,能够牢记每位客人的喜好,并以预测方式为其潜在需求提供解决方案,而这是很多酒店还没有意识到的。 ModiHost公司白皮书指出,“酒店管理是个复杂而精妙的行业,同时也是效率极其低下的行业之一。从业者需要运营多套系统、整合不同的预订系统,并通过电子邮件、传真等多种方式处理预订需求。这一切,都让酒店管理的效率低到无可救药。”即使大家没有切身从业经历,应该也能从平时的酒店入住流程中感受到这种低效。 而令人惊讶的是,普通酒店在为客人带来价值感受方面几乎可以说是什么都没做对。而恰恰是这些不用花什么钱的小心思,最终会在住宿体验上形成巨大差别。 ModiHost的目标,在于“创建一种先进AI,旨在最大程度提高酒店收入、提升入住率并改善宾客满意度”。从小型汽车旅馆到精品酒店,再到大型连锁酒店,整...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS7设置SWAP分区,小内存服务器的救世主
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Hadoop3单机部署,实现最简伪集群
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2整合Redis,开启缓存,提高访问速度