您现在的位置是:首页 > 文章详情

每日一博 | Elasticsearch 索引设置的总结

日期:2020-06-07点击:820

在使用ES时,我们常见的就是需要生成一个template来定义索引的设置,分词器,Mapping.本文将基于项目经验来总结一些常用的配置。

Index设置

  •  index.refresh_interval 

      配置一个刷新时间,将index buffer刷新到os cache的时间间隔,刷新到os cache的数据才可以被索引到,默认是1s.如果对实时性搜索要求不高的地方,可设置时间为30s,提高性能。

  • number_of_replicas

       对于集群数据节点 >=2 的场景,建议副本至少设置为 1(一主一从,共两个副本), 可以提高集群容错和搜索吞吐量(副本分片可用于查询)。

  • index.number_of_shards

     主副本的分片数,默认是5个,最大值限制为1024个,这个值是分片数可适当的增加,提高索引的并发性能,但是分片越多,也会导致资源耗费越高,索引要根据访问并发数和ES集群的资源来设置。经验公式:分片数 = 索引大小/分片大小经验值 30GB,官方推荐Shard值在 20-40GB性能最好,日志类:单分片<50GB;搜索类:单分片<20GB。不足100G,可直接设置3-5个分片(结合节点数和扩展性),超过100G则可以按照如上经验公式来规划。

  • index.max_result_window

    索引能够查询到最大数据量,from+size深分页的最大条数,默认是10000,适当限制这个值可以防止深分页内存占用过多,如果全量导出,需要使用Scroll游标办法。

  • index.store.preload

     默认情况下,Elasticsearch完全依靠操作系统文件系统缓存来缓存I / O操作.可以设置index.store.preload,以告知操作系统在打开时将热索引文件的内容加载到内存中。默认值为空,即不提前加载索引到内存中,常见的值有["nvd", "dvd", "tim", "doc", "dim"]。对应的norms, doc values, terms dictionaries, postings lists, points,常见的设置为 index.store.preload = ["nvd", "dvd"],即提前加载norms评分信息和doc value数据到内存,便于快速索引。

  • index.sort.field  和 index.sort.order

      建立索引的排序字段,写入的时候就按照顺序写入。对于一些具备顺序的字段,可以提前设置,比如时间字段。配置见下

{
    "settings" : {
        "index" : {
            "sort.field" : "date",  // 字段名字
            "sort.order" : "desc"   // 升序 asc 和降序 desc
        }
    }
}

Mapping设置

  •  动态映射

 mapping的通用配置,dynamic_templates配置动态类型转换,将一个类型转换为另一个类型

{
  "mappings": {
    "_doc": {
      "dynamic_templates": [
        {
          "strings_as_keywords": {
            "match_mapping_type": "string",
            "mapping": {
              "type": "keyword"
            }
          }
        }
      ],
      "_source": {
        "enabled": true
      },
      "properties": {
        .....
      }
    }
  }
}
  •  字段类型  

    官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/6.8/mapping.html#_field_datatypes

     a simple type like text, keyword, date, long, double, boolean or ip.

     a type which supports the hierarchical nature of JSON such as object or nested.

    or a specialised type like geo_point, geo_shape, or completion.

  •  常见的类型和搜索类型的联系

    (1)text 类型作用:分词,将大段的文字根据分词器切分成独立的词或者词组,以便全文检索。
       适用于:email 内容、某产品的描述等需要分词全文检索的字段;
       不适用:排序或聚合(Significant Terms 聚合例外)

    (2)keyword 类型:无需分词、整段完整精确匹配。
       适用于:email 地址、住址、状态码、分类 tags。

  • 常见的搜索类型使用的字段类型

 term 精确匹配
 核心功能:不受到分词器的影响,属于完整的精确匹配。
 应用场景:精确、精准匹配。
 适用类型:keyword。

 prefix 前缀匹配
 核心功能:前缀匹配。
 应用场景:前缀自动补全的业务场景。
 适用类型:keyword。

wildcard 模糊匹配
 核心功能:匹配具有匹配通配符表达式 keyword 类型的文档。支持的通配符:*,它匹配任何字符序列(包括空字符序列);?,它匹配任何单个字符。
 应用 场景:请注意,选型务必要慎重!此查询可能很慢多组关键次的情况下可能会导致宕机,因为它需要遍历多个术语。为了防止非常慢的通配符查询,通配符  不能以任何一个通配符*或?开头。
 适用类型:keyword。

match 分词匹配
 核心功能:全文检索,分词词项匹配。
 应用场景:实际业务中较少使用,原因:匹配范围太宽泛,不够准确。
 适用类型:text。

match_phrase 短语匹配
 核心功能:match_phrase 查询首先将查询字符串解析成一个词项列表,然后对这些词项进行搜索; 只保留那些包含 全部 搜索词项,且 位置"position" 与搜索词 项相同的文档。
 应用场景:业务开发中 90%+ 的全文检索都会使用 match_phrase 或者 query_string 类型,而不是 match。
 适用类型:text。

 multi_match 多组匹配
  核心功能:match query 针对多字段的升级版本。
  应用场景:多字段检索。
  适用类型:text。

query_string 类型
核心功能:支持与或非表达式+其他N多配置参数。
应用场景:业务系统需要支持自定义表达式检索。
适用类型:text。

bool 组合匹配
 核心功能:多条件组合综合查询。
 应用场景:支持多条件组合查询的场景。
 适用类型:text 或者 keyword。一个 bool 过滤器由三部分组成:
 must ——所有的语句都 必须(must) 匹配,与 AND 等价。
 must_not ——所有的语句都 不能(must not) 匹配,与 NOT 等价。
 should ——至少有一个语句要匹配,与 OR 等价。
 filter——必须匹配,运行在非评分&过滤模式。

  range范围搜索类型

 适用类型:long,integer,double或者 date

  • properties 字段的参数设置

        

 

  • ES  索引template模板参考例子

PUT _template/test_template
{
  "index_patterns": [
    "test_index_*",
    "test_*"
  ],
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 1,
    "max_result_window": 100000,
    "refresh_interval": "30s"
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "title": {
        "type": "keyword"
      },
      "content": {
        "analyzer": "ik_max_word",
        "type": "text",
        "fields": {
          "keyword": {
            "ignore_above": 256,
            "type": "keyword"
          }
        }
      },
      "available": {
        "type": "boolean"
      },
      "review": {
        "type": "nested",
        "properties": {
          "nickname": {
            "type": "text"
          },
          "text": {
            "type": "text"
          },
          "stars": {
            "type": "integer"
          }
        }
      },
      "publish_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      },
      "expected_attendees": {
        "type": "integer_range"
      },
      "ip_addr": {
        "type": "ip"
      },
      "suggest": {
        "type": "completion"
      }
    }
  }
}
 
原文链接:https://my.oschina.net/manmao/blog/4289387
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章