图解kubernetes批处理Job控制器的关键设计
K8s中的批处理任务模块主要是由Job控制器完成,今天我们就来关注下其底层的关键设计,包括完成状态、并行模式、并行策略等关键机制
1. 基础概念
在聊k8s的任务模块的实现的时候,我们先看一下传统的任务系统的设计与实现,然后聊下基于k8s的基础的概念
1.1 传统的任务系统设计

通常复杂的就是如何在master如何做任务的负载均衡、任务的快速完成、依赖等管控功能,其次就是如何在worker端实现一个牛x的引擎,可以支持各种不同任务的执行环境和类型的执行
1.2 基于Pod的任务载体

1.3 简化的调度层
在k8s中Pod通常被定义为一个不稳定的单元,即k8s并不保证你的pod在被调度到某一台机器后就会一直的稳定运行,直到这台机器下线,这与传统的系统都不太一样,基于该特点,Job调度器的调度层其实也是一种面向于终态的设计。
大概就先介绍这些,接下来我们去分析k8s中job的核心实现机制
2. 核心实现
Job控制器的核心实现有几个关键点:并行粒度、完成状态、并行策略、并行模式、删除策略,记住这些关键点,我们来一一剖析
2.1 并行粒度
并行的粒度是指的针对同一任务可以同时有多少个并行的Pod即同时运行的Pod,Job控制器会根据用户设定的并行粒度确定需要同时运行的Pod
2.2 完成状态
在一些批处理调度的系统里面可能会通过数据分片后,等待所有分片的任务都完成后,来确定任务的完成状态,但是在k8s中Job控制器是一个通用的实现, 而且调度层本身也并不关注调度任务的具体数据 
2.3 并行模式
在k8s的job控制器模式介绍中提到四种并发模式, 那实现上是不是真的有四种模式呢,答案是否定的。可以说k8s的job控制器根本也就不关注是那种模式,模式是应用层自己的设计,而job控制器只负责并行粒度、当前状态、完成状态
这里我们主要分析下Parallel JOb with a fix completion count和Parallel Job with a work queue的实现来聊聊Job控制器是如何实现的,两者很大的一个区别就是后者不能设置Completions,即不需要设置需要等待多少个Pod完成,为什么一个参数的设定就可以实现两者模式呢? 
而Completions设定为数量则意味着只需要完成指定数量的批任务,即任务可能类似于流处理模式,本次只期望完成一部分即可,即Completions设定数量的任务
2.4 并行策略
并行策略主要是指的如果我们指定的Parallelism的数量过大,为了避免单个任务同时创建大量的Job任务对集群带来的影响则采用分批逐次递增的策略,逐步完成并行所需要的Pod的更新
2.5 期望计数

2.6 删除策略
我们提到过期望计数来决定是否更新状态,但这个并不保证一致性,很有可能因为事件的延迟导致控制器创建了大量的Pod此时就需要基于终态的继续调整,即需要根据当前的数量来删除部分的Pod, 删除策略主要是包含六点:1)未分配优先 2)未运行优先 3)未就绪优先 4)运行时间最短优先 5)重启次数多优先 6)创建时间较短优先
3. 总结

kubernetes学习笔记地址: https://www.yuque.com/baxiaoshi/tyado3
> 微信号:baxiaoshi2020 > 关注公告号阅读更多源码分析文章
> 更多文章关注 www.sreguide.com