不可不知的Spark调优点
在利用Spark处理数据时,如果数据量不大,那么Spark的默认配置基本就能满足实际的业务场景。但是当数据量大的时候,就需要做一定的参数配置调整和优化,以保证业务的安全、稳定的运行。并且在实际优化中,要考虑不同的场景,采取不同的优化策略。
1.合理设置微批处理时间
在SparkSreaming流式处理中,合理的设置微批处理时间(batchDuration)是非常有必要的。
如果batchDuration设置过短,会导致SparkStreaming频繁提交job。如果每个batchDuration所产生的job不能在这个时间内完成处理,就会造成job不断堆积,最终导致SparkStreaming发生阻塞,甚至程序宕掉。
需要根据不同的应用场景和硬件配置等确定,可以根据SparkStreaming的可视化监控界面,观察Total Delay等