代码开源 | COCO-16 图像分割冠军:首个全卷积端到端实例分割模型
继图像分类、物体检测之后,精确到像素级别的物体实例分割就成为更具挑战性和实用性的视觉识别任务。前两个任务在近年来取得了迅速的进展,已经有了不少优雅有效的方法。然而,实例分割任务却还缺少一个标杆性的工作。
为此,来自清华大学和微软研究院的李益、齐浩之、代季峰、季向阳、危夷晨合作,利用全卷积神经网络(FCN)在图像语义分割和实例分割预测方面的优势,提出了一种新的架构 FCIS。
FCIS 是首个全卷积、端到端的实例分割解决方案,为实例分割提供了一个简单、快速、准确的框架,由于考虑到实例分割预测和分类这两个步骤之间的关联,FCIS 能够同时对多个物体实例进行检测和分割。
FCIS 在 COCO 2016 分割竞赛中以显著优势获得了第一名。日前,他们的研究论文《全卷积实例语义分割》(Fully Convolutional Instance-aw