首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/185665

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

两届CVPR最佳论文得主何恺明新作:应对样本的不平衡分布,刷新密集物体检测表现上限

雷锋网 AI 科技评论按:CV大牛何恺明在Facebook人工智能实验室的新作,一起来围观! 何恺明博士,2007年清华大学毕业之后开始在微软亚洲研究院(MSRA)实习,2011年香港中文大学博士毕业后正式加入MSRA,目前在Facebook人工智能实验室(FAIR)实验室担任研究科学家。何恺明博士最让人印象深刻的是曾两次以第一作者身份摘得CVPR最佳论文奖(2009和2016),其中2016年CVPR最佳论文为图像识别中的深度残差学习(Deep Residual Learning for Image Recognition),就是举世闻名的152层深度残差网络 ResNet-152。 这次,何恺明博士的新论文名为「Focal Loss for Dense Object Detection」,利用“焦距损失”的方法,应对样本不均衡的问

以Flink为例,消除流处理常见的六大谬见

我们在思考流处理问题上花了很多时间,更酷的是,我们也花了很多时间帮助其他人认识流处理,以及如何在他们的组织里应用流处理来解决数据问题。 我们首先要做的是纠正人们对流处理(作为一个快速变化的领域,这里有很多误见值得我们思考)的错误认识。 在这篇文章里,我们选出了其中的六个作为例子。因为我们对Apache Flink比较熟悉,所以我们会基于Flink来讲解这些例子。 谬见1:没有不使用批处理的流(Lambda架构) 谬见2:延迟和吞吐量:只能选择一个 谬见3:微批次意味着更好的吞吐量 谬见4:Exactly once?完全不可能 谬见5:流只能被应用在“实时”场景里 谬见6:不管怎么样,流仍然很复杂 谬见1:没有不使用批处理的流(Lambda架构) “Lambda架构”在Apache Storm的早期阶段和其它流处理项目里是一个很有用的设计模式。这个架构包含了一个“快速流层”和一个“批次层”。 之所以使用两个单独的层,是因为Lambda架构里的流处理只能计算出大致的结果(也就是说,如果中间出现了错误,那么计算结果就不可信),而且只能处理相对少量的事件。 算Storm的早期版本存在这样的问题...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册