您现在的位置是:首页 > 文章详情

解析:深度学习框架Caffe源码

日期:2017-07-31点击:609

雷锋网按:本文作者薛云峰,主要从事视频图像算法的研究,于浙江捷尚视觉科技股份有限公司担任深度学习算法研究员。

相信很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。本文将从整体架构和底层实现的视角,对Caffe源码进行解析。

1.Caffe总体架构

Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。每个网络则由若干个Layer构成。每个Layer的输入和输出Feature map表示为Input Blob和Output Blob。Blob是Caffe实际存储数据的结构,是一个不定维的矩阵,在Caffe中一般用来表示一个拉直

原文链接:https://yq.aliyun.com/articles/179809
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章