并发编程-CompletableFuture解析 | 京东物流技术团队
1、CompletableFuture介绍 CompletableFuture对象是JDK1.8版本新引入的类,这个类实现了两个接口,一个是Future接口,一个是CompletionStage接口。 CompletionStage接口是JDK1.8版本提供的接口,用于异步执行中的阶段处理,CompletionStage定义了一组接口用于在一个阶段执行结束之后,要么继续执行下一个阶段,要么对结果进行转换产生新的结果等,一般来说要执行下一个阶段都需要上一个阶段正常完成,这个类也提供了对异常结果的处理接口 2、CompletableFuture的API 2.1 提交任务 在CompletableFuture中提交任务有以下几种方式: public static CompletableFuture<Void> runAsync(Runnable runnable) public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor) public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor) 这四个方法都是用来提交任务的,不同的是supplyAsync提交的任务有返回值,runAsync提交的任务没有返回值。两个接口都有一个重载的方法,第二个入参为指定的线程池,如果不指定,则默认使用ForkJoinPool.commonPool()线程池。在使用的过程中尽量根据不同的业务来指定不同的线程池,方便对不同线程池进行监控,同时避免业务共用线程池相互影响。 2.2 结果转换 2.2.1 thenApply public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor) thenApply这一组函数入参是Function,意思是将上一个CompletableFuture执行结果作为入参,再次进行转换或者计算,重新返回一个新的值。 2.2.2 handle public <U> CompletableFuture<U> handle(BiFunction<? super T, Throwable, ? extends U> fn) public <U> CompletableFuture<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn) public <U> CompletableFuture<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn, Executor executor) handle这一组函数入参是BiFunction,该函数式接口有两个入参一个返回值,意思是处理上一个CompletableFuture的处理结果,同时如果有异常,需要手动处理异常。 2.2.3 thenRun public CompletableFuture<Void> thenRun(Runnable action) public CompletableFuture<Void> thenRunAsync(Runnable action) public CompletableFuture<Void> thenRunAsync(Runnable action, Executor executor) thenRun这一组函数入参是Runnable函数式接口,该接口无需入参和出参,这一组函数是在上一个CompletableFuture任务执行完成后,在执行另外一个接口,不需要上一个任务的结果,也不需要返回值,只需要在上一个任务执行完成后执行即可。 2.2.4 thenAccept public CompletableFuture<Void> thenAccept(Consumer<? super T> action) public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action, Executor executor) thenAccept这一组函数的入参是Consumer,该函数式接口有一个入参,没有返回值,所以这一组接口的意思是处理上一个CompletableFuture的处理结果,但是不返回结果。 2.2.5 thenAcceptBoth public <U> CompletableFuture<Void> thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action) public <U> CompletableFuture<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action) public <U> CompletableFuture<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action, Executor executor) thenAcceptBoth这一组函数入参包括CompletionStage以及BiConsumer,CompletionStage是JDK1.8新增的接口,在JDK中只有一个实现类:CompletableFuture,所以第一个入参就是CompletableFuture,这一组函数是用来接受两个CompletableFuture的返回值,并将其组合到一起。BiConsumer这个函数式接口有两个入参,并且没有返回值,BiConsumer的第一个入参就是调用方CompletableFuture的执行结果,第二个入参就是thenAcceptBoth接口入参的CompletableFuture的执行结果。所以这一组函数意思是将两个CompletableFuture执行结果合并到一起。 2.2.6 thenCombine public <U,V> CompletableFuture<V> thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn) public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn) public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor) thenCombine这一组函数和thenAcceptBoth类似,入参都包含一个CompletionStage,也就是CompletableFuture对象,意思也是组合两个CompletableFuture的执行结果,不同的是thenCombine的第二个入参为BiFunction,该函数式接口有两个入参,同时有一个返回值。所以与thenAcceptBoth不同的是,thenCombine将两个任务结果合并后会返回一个全新的值作为出参。 2.2.7 thenCompose public <U> CompletableFuture<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn) public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn) public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn, Executor executor) thenCompose这一组函数意思是将调用方的执行结果作为Function函数的入参,同时返回一个新的CompletableFuture对象。 2.3 回调方法 public CompletableFuture<T> whenComplete(BiConsumer<? super T, ? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action, Executor executor) whenComplete方法意思是当上一个CompletableFuture对象任务执行完成后执行该方法。BiConsumer函数式接口有两个入参没有返回值,这两个入参第一个是CompletableFuture任务的执行结果,第二个是异常信息。表示处理上一个任务的结果,如果有异常,则需要手动处理异常,与handle方法的区别在于,handle方法的BiFunction是有返回值的,而BiConsumer是没有返回值的。 以上方法都有一个带有Async的方法,带有Async的方法表示是异步执行的,会将该任务放到线程池中执行,同时该方法会有一个重载的方法,最后一个参数为Executor,表示异步执行可以指定线程池执行。为了方便进行控制,最好在使用CompletableFuture时手动指定我们的线程池。 2.4 异常处理 public CompletableFuture<T> exceptionally(Function<Throwable, ? extends T> fn) exceptionally是用来处理异常的,当任务抛出异常后,可以通过exceptionally来进行处理,也可以选择使用handle来进行处理,不过两者有些不同,hand是用来处理上一个任务的结果,如果有异常情况,就处理异常。而exceptionally可以放在CompletableFuture处理的最后,作为兜底逻辑来处理未知异常。 2.5 获取结果 public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs) public static CompletableFuture<Object> anyOf(CompletableFuture<?>... cfs) allOf是需要入参中所有的CompletableFuture任务执行完成,才会进行下一步; anyOf是入参中任何一个CompletableFuture任务执行完成都可以执行下一步。 public T get() throws InterruptedException, ExecutionException public T get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException public T getNow(T valueIfAbsent) public T join() get方法一个是不带超时时间的,一个是带有超时时间的。 getNow方法则是立即返回结果,如果还没有结果,则返回默认值,也就是该方法的入参。 join方法是不带超时时间的等待任务完成。 3、CompletableFuture原理 join方法同样表示获取结果,但是join与get方法有什么区别呢。 public T join() { Object r; return reportJoin((r = result) == null ? waitingGet(false) : r); } public T get() throws InterruptedException, ExecutionException { Object r; return reportGet((r = result) == null ? waitingGet(true) : r); } public T get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { Object r; long nanos = unit.toNanos(timeout); return reportGet((r = result) == null ? timedGet(nanos) : r); } public T getNow(T valueIfAbsent) { Object r; return ((r = result) == null) ? valueIfAbsent : reportJoin(r); } 以上是CompletableFuture类中两个方法的代码,可以看到两个方法几乎一样。区别在于reportJoin/reportGet,waitingGet方法是一致的,只不过参数不一样,我们在看下reportGet与reportJoin方法。 private static <T> T reportGet(Object r) throws InterruptedException, ExecutionException { if (r == null) // by convention below, null means interrupted throw new InterruptedException(); if (r instanceof AltResult) { Throwable x, cause; if ((x = ((AltResult)r).ex) == null) return null; if (x instanceof CancellationException) throw (CancellationException)x; if ((x instanceof CompletionException) && (cause = x.getCause()) != null) x = cause; throw new ExecutionException(x); } @SuppressWarnings("unchecked") T t = (T) r; return t; } private static <T> T reportJoin(Object r) { if (r instanceof AltResult) { Throwable x; if ((x = ((AltResult)r).ex) == null) return null; if (x instanceof CancellationException) throw (CancellationException)x; if (x instanceof CompletionException) throw (CompletionException)x; throw new CompletionException(x); } @SuppressWarnings("unchecked") T t = (T) r; return t; } 可以看到这两个方法很相近,reportGet方法判断了r对象是否为空,并抛出了中断异常,而reportJoin方法没有判断,同时reportJoin抛出的都是运行时异常,所以join方法也是无需手动捕获异常的。 我们在看下waitingGet方法 private Object waitingGet(boolean interruptible) { Signaller q = null; boolean queued = false; int spins = -1; Object r; while ((r = result) == null) { if (spins < 0) spins = SPINS; else if (spins > 0) { if (ThreadLocalRandom.nextSecondarySeed() >= 0) --spins; } else if (q == null) q = new Signaller(interruptible, 0L, 0L); else if (!queued) queued = tryPushStack(q); else if (interruptible && q.interruptControl < 0) { q.thread = null; cleanStack(); return null; } else if (q.thread != null && result == null) { try { ForkJoinPool.managedBlock(q); } catch (InterruptedException ie) { q.interruptControl = -1; } } } if (q != null) { q.thread = null; if (q.interruptControl < 0) { if (interruptible) r = null; // report interruption else Thread.currentThread().interrupt(); } } postComplete(); return r; } 该waitingGet方法是通过while的方式循环判断是否任务已经完成并产生结果,如果结果为空,则会一直在这里循环,这里需要注意的是在这里初始化了一下spins=-1,当第一次进入while循环的时候,spins是-1,这时会将spins赋值为一个常量,该常量为SPINS。 private static final int SPINS = (Runtime.getRuntime().availableProcessors() > 1 ? 1 << 8 : 0); 这里判断可用CPU数是否大于1,如果大于1,则该常量为 1<< 8,也就是256,否则该常量为0。 第二次进入while循环的时候,spins是256大于0,这里做了减一的操作,下次进入while循环,如果还没有结果,依然是大于0继续做减一的操作,此处用来做短时间的自旋等待结果,只有当spins等于0,后续会进入正常流程判断。 我们在看下timedGet方法的源码 private Object timedGet(long nanos) throws TimeoutException { if (Thread.interrupted()) return null; if (nanos <= 0L) throw new TimeoutException(); long d = System.nanoTime() + nanos; Signaller q = new Signaller(true, nanos, d == 0L ? 1L : d); // avoid 0 boolean queued = false; Object r; // We intentionally don't spin here (as waitingGet does) because // the call to nanoTime() above acts much like a spin. while ((r = result) == null) { if (!queued) queued = tryPushStack(q); else if (q.interruptControl < 0 || q.nanos <= 0L) { q.thread = null; cleanStack(); if (q.interruptControl < 0) return null; throw new TimeoutException(); } else if (q.thread != null && result == null) { try { ForkJoinPool.managedBlock(q); } catch (InterruptedException ie) { q.interruptControl = -1; } } } if (q.interruptControl < 0) r = null; q.thread = null; postComplete(); return r; } timedGet方法依然是通过while循环的方式来判断是否已经完成,timedGet方法入参为一个纳秒值,并通过该值计算出一个deadline截止时间,当while循环还未获取到任务结果且已经达到截止时间,则抛出一个TimeoutException异常。 4、CompletableFuture实现多线程任务 这里我们通过CompletableFuture来实现一个多线程处理异步任务的例子。 这里我们创建10个任务提交到我们指定的线程池中执行,并等待这10个任务全部执行完毕。 每个任务的执行流程为第一次先执行加法,第二次执行乘法,如果发生异常则返回默认值,当10个任务执行完成后依次打印每个任务的结果。 public void demo() throws InterruptedException, ExecutionException, TimeoutException { // 1、自定义线程池 ExecutorService executorService = new ThreadPoolExecutor(5, 10, 60L, TimeUnit.SECONDS, new LinkedBlockingQueue<>(100)); // 2、集合保存future对象 List<CompletableFuture<Integer>> futures = new ArrayList<>(10); for (int i = 0; i < 10; i++) { int finalI = i; CompletableFuture<Integer> future = CompletableFuture // 提交任务到指定线程池 .supplyAsync(() -> this.addValue(finalI), executorService) // 第一个任务执行结果在此处进行处理 .thenApplyAsync(k -> this.plusValue(finalI, k), executorService) // 任务执行异常时处理异常并返回默认值 .exceptionally(e -> this.defaultValue(finalI, e)); // future对象添加到集合中 futures.add(future); } // 3、等待所有任务执行完成,此处最好加超时时间 CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).get(5, TimeUnit.MINUTES); for (CompletableFuture<Integer> future : futures) { Integer num = future.get(); System.out.println("任务执行结果为:" + num); } System.out.println("任务全部执行完成!"); } private Integer addValue(Integer index) { System.out.println("第" + index + "个任务第一次执行"); if (index == 3) { int value = index / 0; } return index + 3; } private Integer plusValue(Integer index, Integer num) { System.out.println("第" + index + "个任务第二次执行,上次执行结果:" + num); return num * 10; } private Integer defaultValue(Integer index, Throwable e) { System.out.println("第" + index + "个任务执行异常!" + e.getMessage()); e.printStackTrace(); return 10; } 作者:京东物流 丁冬 来源:京东云开发者社区 自猿其说Tech