2017谷歌火力全开:瞄准机器学习与数据分析
2016年,Google将赌注的筹码放在了机器学习和数据分析上,以此来区分它的云平台,从而在企业客户中产生重大影响力。 2016年,Google消除了其在云承诺上所有持续问题,因为其战略在未来几年将成为企业市场的主要参与者。 该公司花了数百亿美元,为Google Cloud Platform(GCP)建立基础设施、服务和人才库。因此,它不再强调价格是主要的区分因素,而是侧重于企业需求、数据分析和一套用于推动应用的技术。Google 表示未来主导将这一行业。 机器学习对于许多IT企业来说仍然太新,但Google已经把它作为云计算的未来。2016年,它增加的新服务包括用于服务和新版翻译的机器智能套件、文本分析,以及图像和语音识别。 TensorFlow 是2015年的一个开源机器学习框架,且获得了Tensor处理单元的大力支持。针对TensorFlow量身定制的专用集成电路已经在Google内部使用一年多了,并且承诺每瓦更好 的性能。2017年,Google计划为其机器学习和Google Compute Engine客户添加GPU。 Kubernetes是Google内部编排工具的开源版本...