独家 | 利用Auto ARIMA构建高性能时间序列模型(附Python和R代码)
简介 想象你现在有一个任务:根据已有的历史数据,预测下一代iPhone的价格,可使用的特征包括季度销售、月度支出以及苹果资产负债表上的一系列内容。作为一名数据科学家,你会把这个问题归类为哪一类问题?当然是时间序列建模。 从预测产品销售到估算家庭用电量,时间序列预测是任何数据科学家都应该知道——哪怕不是熟练掌握——的核心技能之一。你可以使用多种不同的方法进行时间序列预测,我们将在本文中讨论Auto ARIMA,它是最为有效的方法之一。 首先,我们来了解一下ARIMA的概念,然后再进入正题——Auto ARIMA。为了巩固概念,我们将使用一个数据集,并用Python和R实现它。 目录 一、什么是时间序列? 二、时间序列预测的方法 三、ARIMA简介 四、ARIMA实现步骤 五、为什么需要Auto ARIMA? 六、用Auto ARIMA实现案例(航空乘客