水平分库如何做到平滑扩展
这个对于我们常用的分库分表方案来说,有很大的优势,分库分表的扩容是一件头疼的问题,如果采用对db层做一致性hash,或是中间价的支持,它的成本过于高昂了,如果不如此,只能停机维护来处理,对高可用性会产生影响。
那是否有方案,既可以快速扩展,又不降低可用性?这一篇,我们聊聊分库分表的扩展方案,供大家一起探讨。
一、水平分库扩展问题
为了增加db的并发能力,常见的方案就是对数据进行sharding,也就是常说的分库分表,这个需要在初期对数据规划有一个预期,从而预先分配出足够的库来处理。
比如目前规划了3个数据库,基于uid进行取余分片,那么每个库上的划分规则如下:
如上我们可以看到,数据可以均衡的分配到3个数据库里面。
但是,如果后续业务发展的速度很快,用户量数据大量上升,当前容量不足以支撑,应该怎么办?
需要对数据库进行水平扩容,再增加新库来分解。新库加入之后,原先sharding到3个库的数据,就可以sharding到四个库里面了
不过此时由于分片规则进行了变化(uid%3 变为uid%4),大部分的数据,无法命中在原有的数据库上了,需要重新分配,大量数据需要迁移。
比如之前uid1通过uid1%3 分配在A库上,新加入库D之后,算法改为uid1%4 了,此时有可能就分配在B库上面了。如果你有看到之前《一致性哈希的原理与实践》,就会发现新增一个节点,大概会有90%的数据需要迁移,这个对DB同学的压力还是蛮大的,那么如何应对?
一般有以下几种方式。
二、停服迁移
停服迁移是最常见的一种方案了,一般如下流程:
1.预估停服时间,发布停服公告
2.停服,通过事先做好的数据迁移工具,按照新的分片规则,进行迁移
3.修改分片规则
4.启动服务
我们看到这种方式比较安全,停服之后没有数据写入,能够保证迁移工作的正常进行,没有一致性的问题。唯一的问题,就是停服了和时间压力了。
1.停服,伤害用户体验,同时也降低了服务器的可用性
2.必须在制定时间内完成迁移,如果失败,需要择日再次进行。同时增加了开发人员的压力,容易发生大的事故
3.数据量的巨大的时候,迁移需要大量时间
那有没有其他方式来改进一下,我们看下以下两种方案。
三、升级从库
线上数据库,我们为了保持其高可用,一般都会每台主库配一台从库,读写在主库,然后主从同步到从库。如下,A,B是主库,A0和B0是从库。
此时,当需要扩容的时候,我们把A0和B0升级为新的主库节点,如此由2个分库变为4个分库。同时在上层的分片配置,做好映射,规则如下:
uid%4=0和uid%4=2的分别指向A和A0,也就是之前指向uid%2=0的数据,分裂为uid%4=0和uid%4=2
uid%4=1和uid%4=3的指向B和B0,也就是之前指向uid%2=1的数据,分裂为uid%4=1和uid%4=3
因为A和A0库的数据相同,B和B0数据相同,所以此时无需做数据迁移即可。只需要变更一下分片配置即可,通过配置中心更新,无需重启。
由于之前uid%2的数据分配在2个库里面,此时分散到4个库中,由于老数据还存在(uid%4=0,还有一半uid%4=2的数据),所以需要对冗余数据做一次清理。
而这个清理,不会影响线上数据的一致性,可是随时随地进行。
处理完成以后,为保证高可用,以及下一步扩容需求。可以为现有的主库再次分配一个从库。
总结一下此方案步骤如下:
1.修改分片配置,做好新库和老库的映射。
2.同步配置,从库升级为主库
3.解除主从关系
4.冗余数据清理
5.为新的数据节点搭建新的从库
四、双写迁移
双写的方案,更多的是针对线上数据库迁移来用的,当然了,对于分库的扩展来说也是要迁移数据的,因此,也可以来协助分库扩容的问题。
原理和上述相同,做分裂扩容,只是数据的同步方式不同了。
1.增加新库写链接
双写的核心原理,就是对需要扩容的数据库上,增加新库,并对现有的分片上增加写链接,同时写两份数据。
因为新库的数据为空,所以数据的CRUD对其没有影响,在上层的逻辑层,还是以老库的数据为主。
2.新老库数据迁移
通过工具,把老库的数据迁移到新库里面,此时可以选择同步分裂后的数据(1/2)来同步,也可以全同步,一般建议全同步,最终做数据校检的时候好处理。
3.数据校检
按照理想环境情况下,数据迁移之后,因为是双写操作,所以两边的数据是一致的,特别是insert和update,一致性情况很高。但真实环境中会有网络延迟等情况,对于delete情况并不是很理想,比如:
A库删除数据a的时候,数据a正在迁移,还没有写入到C库中,此时C库的删除操作已经执行了,C库会多出一条数据。
此时就需要做好数据校检了,数据校检可以多做几遍,直到数据几乎一致,尽量以旧库的数据为准。
4.分片配置修改
数据同步完毕,就可以把新库的分片映射重新处理了,还是按照老库分裂的方式来进行,
u之前uid%2=0,变为uid%4=0和uid%4=2的
uid%2=1,变为uid%4=1和uid%4=3的。
引用:
https://mp.weixin.qq.com/s/BLOneOs-cPxP_9b5eH8oQA

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
了解人工智能之基础概念-基本概念问答
在关注了机器学习一段时间以后,最近我开始投入到这个领域的研究中。 去年,我开始学习自然语言处理的相关知识,并撰写了一些这方面的文章。 同时我开始更广泛地接触机器学习理论,并主要专注于文本理解和文本处理。周围一些对人工智能有兴趣的朋友和同事时常会问我一些相似的问题,而我尽可能地就我所知道的给予他们回答。因为在理解以及真正运用那些高深的数学知识之前,还要具备一些必要的基本概念。因此我也越来越意识到普及这些基础知识的重要性和必要性。 “人工智能,机器学习,神经网络,深度学习,到底有啥区别”,这是我常常被问及的一个话题。人工智能,机器学习,神经网络,深度学习,它们是具有不同含义的四个术语。不过人们往往把它们交替使用。 就我的理解,这样的互换在大多数情况都没有太大的错误。不过准确的区分它们可以帮助我们了解行业的现状与发展方向。 人工智能(AI-Artificial intelligence )就是让计算机帮助人类解决问题,它可以被看成是这个领域的总称。 我将它区别于软件工程。在软件工程中,我们更专注于如何编程,从而让计算机执行某项任务。在今天,人工智能几乎包含现实世界的方方面面,毫不夸张的说人工...
-
下一篇
龙果支付开源项目问题收集
在使用过程中,如果有发现bug或者觉得代码不合理的地方,请在下面留言。
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2全家桶,快速入门学习开发网站教程
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- CentOS关闭SELinux安全模块
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS8编译安装MySQL8.0.19