Tensorflow源码解析6 -- TensorFlow本地运行时
1 概述
TensorFlow后端分为四层,运行时层、计算层、通信层、设备层。运行时作为第一层,实现了session管理、graph管理等很多重要的逻辑,是十分关键的一层。根据任务分布的不同,运行时又分为本地运行时和分布式运行时。本地运行时,所有任务运行于本地同一进程内。而分布式运行时,则允许任务运行在不同机器上。
Tensorflow的运行,通过session搭建了前后端沟通的桥梁,前端几乎所有操作都是通过session进行。session的生命周期由创建、运行、关闭、销毁组成,前文已经详细讲述过。可以将session看做TensorFlow运行的载体。而TensorFlow运行的核心对象,则是计算图Graph。它由计算算子和计算数据两部分构成,可以完整描述整个计算内容。Graph的生命周期包括构建和传递、剪枝、分裂、执行等步骤,本