首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/637699

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

如何为你的回归问题选择最合适的机器学习算法?

当我们要解决任意一种机器学习问题时,都需要选择合适的算法。在机器学习中存在一种“没有免费的午餐”定律,即没有一款机器学习模型可以解决所有问题。不同的机器学习算法表现取决于数据的大小和结构。所以,除非用传统的试错法实验,否则我们没有明确的方法证明某种选择是对的。 但是,每种机器学习算法都有各自的有缺点,这也能让我们在选择时有所参考。虽然一种算法不能通用,但每个算法都有一些特征,能让人快速选择并调整参数。接下来,我们大致浏览几种常见的用于回归问题的机器学习算法,并根据它们的优点和缺点总结出在什么情况下可以使用。 线性和多项式回归 首先是简单的情况,单一变量的线性回归是用于表示单一输入自变量和因变量之间的关系的模型。多变量线性回归更常见,其中模型是表示多个输入自变量和输出因变量之间的关系。模型保持线性是因为输出是输入变量的线性结合。 第三种行间情况称为多项式回归,这里的模型是特征向量的非线性结合,即向量是指数变量,sin、cos等等。这种情况需要考虑数据和输出之间的关系,回归模型可以用随机梯度下降训练。 优点: ● 建模速度快,在模型结构不复杂并且数据较少的情况下很有用。 ● 线性回归易于理...

NLG ≠ 机器写作 | 专家专栏

引子 2017年5月31日,包括 Aaron Courville(《Deep Learning》一书作者)在内的五位作者,在 arXiv 上提交了一篇论文《Adversarial Generation of Natural Language》,提出了一种新的基于生成对抗网络(Generative Adversarial Networks, GAN)的自然语言生成(Natural Language Generation,NLG)方法,在自动写诗这件事情上取得了非常好的效果,但这并不是重点。 重点是,这篇文章引发了自然语言处理(Natural Language Processing, NLP)大神 Yoav GoldGerg和深度学习(Deep Learning, DL)大神 Yann LeCun 的论战。 Yoav 先是在 Twitter

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。