首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/637419

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

五大维度深入分析,入门AI首先需要选好方向

我们已经可以用刷脸来解锁手机... 我们已经可以用录音来转换文字笔记... 我们已经可以用电脑帮忙写文章... 关键是现在下围棋还赢不了“电脑”... 是什么改变了我们的工作方式及认知 —— 人工智能(Artificial Intelligence) 人类用机器帮助生产的脚步从未停止,想进入AI领域,首先要了解目前人工智能产业的结构体系: “基础支撑“和“商业场景”是企业层面的问题,对于个人发展则需要在“核心技术”层面去提升 —— 让自己具备AI行业的职场能力才是王道! 若想步入AI领域,应该选择什么方向呢? 先拿2017年AI领域各赛道的投资数据来做个分析: 整体来看,投资事件数最多的为计算机视觉方向,其次是自然语言处理、智能机器人及自动驾驶。同时据其他数据显示,计算机视觉在人工智能领域拥有最多的创业公司,占比高达17.7%。 数据来源:《2017年人工智能行业发展研究报告白皮书》 (IT耳朵&IT桔子共同发布) 那么人工智能-计算机视觉方向具体做什么呢? 计算机视觉是指用机器模拟“视觉器官”,对目标进行识别、跟踪和测量等,并由计算机代替大脑完成进一步的图像处理和解释。目前我...

如何为你的回归问题选择最合适的机器学习算法?

当我们要解决任意一种机器学习问题时,都需要选择合适的算法。在机器学习中存在一种“没有免费的午餐”定律,即没有一款机器学习模型可以解决所有问题。不同的机器学习算法表现取决于数据的大小和结构。所以,除非用传统的试错法实验,否则我们没有明确的方法证明某种选择是对的。 但是,每种机器学习算法都有各自的有缺点,这也能让我们在选择时有所参考。虽然一种算法不能通用,但每个算法都有一些特征,能让人快速选择并调整参数。接下来,我们大致浏览几种常见的用于回归问题的机器学习算法,并根据它们的优点和缺点总结出在什么情况下可以使用。 线性和多项式回归 首先是简单的情况,单一变量的线性回归是用于表示单一输入自变量和因变量之间的关系的模型。多变量线性回归更常见,其中模型是表示多个输入自变量和输出因变量之间的关系。模型保持线性是因为输出是输入变量的线性结合。 第三种行间情况称为多项式回归,这里的模型是特征向量的非线性结合,即向量是指数变量,sin、cos等等。这种情况需要考虑数据和输出之间的关系,回归模型可以用随机梯度下降训练。 优点: ● 建模速度快,在模型结构不复杂并且数据较少的情况下很有用。 ● 线性回归易于理...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册