首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/198807

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

机器学习领域中的六大误区

误区 机器学习已经不再仅限于科幻电影——从Siri与Alexa语音识别到Facebook的照片自动标记,再到Amazon与Spotify商品推荐,机器学习技术开始越来越多地融入日常生活。目前,众多企业渴望着利用机器学习算法以改进自身网络效率。 与任何技术一样,机器学习如果未经正确实施,同样有可能对网络造成严重危害。因此在采取这项技术之前,企业应当了解机器学习可能引发的问题,同时尽量加以避免。在今天的文章中,瞻博网络公司安全智能软件得Roman Sinayev列举了以下六种机器学习领域的认识误区。 忽视意料外的变量行为 有些事物计算机认为很重要,而人类却会瞬间将其判断为毫无价值。正因为如此,部署机器学习算法之前,必须尽可能考虑更多相关变量与潜在结果。 以模型训练为例,我们假定需要帮助算法区图片中的两类载具——卡车与轿车。如果所有卡车图片皆拍摄于夜间,而全部轿车图片皆拍摄于白天,那么这套模型就会认为夜间出现的一定是卡车。 处理关键性变量及结果将有助于降低解决方案出现不必要及意外行为的可能性。 忽略数据作业 为了构建起一套训练有素的统计模型,我们必须了解被分析数据的来源与集合。这部分信息很可...

2017,最受欢迎的 15 大 Python 库有哪些?

近年来,Python 在数据科学行业扮演着越来越重要的角色。因此,我根据近来的使用体验,在本文中列出了对数据科学家、工程师们最有用的那些库。 由于这些库都开源了,我们从Github上引入了提交数,贡献者数和其他指标,这可以作为库流行程度的参考指标。 核心库 1. NumPy (提交数: 15980, 贡献者数: 522) 当开始处理Python中的科学任务,Python的SciPy Stack肯定可以提供帮助,它是专门为Python中科学计算而设计的软件集合(不要混淆SciPy库,它是SciPy Stack的一部分,和SciPy Stack的社区)这样我们开始来看一下吧。然而,SciPy Stack相当庞大,其中有十几个库,我们把焦点放在核心包上(特别是最重要的)。 关于建立科学计算栈,最基本的包是Numpy(全称为Numerical Py

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。