首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/704639

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

漫谈分布式计算框架

如果问 mapreduce 和 spark 什么关系,或者说有什么共同属性,你可能会回答他们都是大数据处理引擎。如果问 spark 与 tensorflow 呢,就可能有点迷糊,这俩关注的领域不太一样啊。但是再问 spark 与 MPI 呢?这个就更远了。虽然这样问多少有些不严谨,但是它们都有共同的一部分,这就是我们今天谈论的一个话题,一个比较大的话题:分布式计算框架。 不管是 mapreduce,还是 spark 亦或 tensorflow,它们都是利用分布式的能力,运行某些计算,解决一些特定的问题。从这个 level 讲,它们都定义了一种“分布式计算模型”,即提出了一种计算的方法,通过这种计算方法,就能够解决大量数据的分布式计算问题。它们的区别在于提出的分布式计算模型不同。Mapreduce 正如其名,是一个很基本的 map-r

使用EMR Spark Relational Cache跨集群同步数据

Relational Cache相关文章链接: 使用Relational Cache加速EMR Spark数据分析 背景 Relational Cache是EMR Spark支持的一个重要特性,主要通过对数据进行预组织和预计算加速数据分析,提供了类似传统数据仓库物化视图的功能。除了用于提升数据处理速度,Relational Cache还可以应用于其他很多场景,本文主要介绍如何使用Relational Cache跨集群同步数据表。通过统一的Data Lake管理所有数据是许多公司追求的目标,但是在现实中,由于多个数据中心,不同网络Region,甚至不同部门的存在,不可避免的会存在多个不同的大数据集群,不同集群的数据同步需求普遍存在,此外,集群迁移,搬站涉及到的新老数据同步也是一个常见的问题。数据同步的工作通常是一个比较痛苦的过程,迁移工具

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册