案例篇-HBase 在人工智能场景的使用
近几年来,人工智能逐渐火热起来,特别是和大数据一起结合使用。人工智能的 主要场景又包括图像能力、语音能力、自然语言处理能力和用户画像能力等等。 这些场景我们都需要处理海量的数据,处理完的数据一般都需要存储起来,这些数据的特点主要有如下几点:
- 大:数据量越大,对我们后面建模越会有好处;
- 稀疏:每行数据可能拥有不同的属性,比如用户画像数据,每个人拥有属性相差很大,可能用户 A 拥有这个属性,但是用户 B 没有这个属性;那么我们希望存储的系统能够处理这种情况,没有的属性在底层不占用空间,这样可以节约大量的空间使用;
- 列动态变化:每行数据拥有的列数是不一样的。
为了更好的介绍 HBase 在人工智能场景下的使用,下面以某人工智能行业的客户案例进行分析如何利用 HBase 设计出一个快速查找人脸特征的系统。
目前该公司的业务场景里面有很多人脸相关的特

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
案例篇-HBase 在滴滴出行的应用场景和最佳实践
1.背景**1.1 对接业务类型** HBase 是建立在 Hadoop 生态之上的 Database,源生对离线任务支持友好,又因为 LSM 树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。 在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线 业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、 安全和用户行为分析、模型训练等。 1.2 多语言支持 HBase 提供了多语言解决方案,并且由于滴滴各业务线 RD 所使用的开发语言各 有偏好,所以多语言支持对于 HBase 在滴滴内部的发展是至关重要的一部分。我 们对用户提供了多种语言的访问方式:HBase Java native API、Thrift Server(
-
下一篇
Flink入坑指南 第四章:SQL中的经典操作Group By+Agg
Flink入坑指南系列文章,从实际例子入手,一步步引导用户零基础入门实时计算/Flink,并成长为使用Flink的高阶用户。 简介 Group By + Agg这个最经典的SQL使用方式。Group By是SQL中最基础的分组操作,agg的全称是aggregation(聚合操作),是一类SQL算子的统称,Flink中最常用的Agg操作有COUNT/SUM/AVG等,详情参见Flink支持的聚合操作列表。在实际使用中,Group By+Agg绝大部分场景下都会一起出现。作为最常用的SQL模式,学习好这种模式的最优写法,也就非常重要了。本章从两个需求开始,进一步了解一下Group By + Agg模式的最优写法,及实时计算产品/Alibaba Flink版本中的部分优化. 需求 上一章中,小明已经把第一个需求完成了,同时也了解了持续查询,st
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- MySQL数据库在高并发下的优化方案
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- MySQL8.0.19开启GTID主从同步CentOS8
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS8编译安装MySQL8.0.19
- SpringBoot2全家桶,快速入门学习开发网站教程