首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/371539

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Hadoop MapReduce概念学习系列之不同的瑞士军刀:对比 Spark 和 MapReduce(十五)

Apache 基金会下的 Spark 再次引爆了大数据的话题。带着比 Hadoop MapReduce 速度要快 100 倍的承诺以及更加灵活方便的 API,一些人认为这或许预示着 Hadoop MapReduce 的终结。 作为一个开源的数据处理框架,Spark 是如何做到如此迅速地处理数据的呢?秘密就在于它是运行在集群的内存上的,而且不受限于 MapReduce 的二阶段范式。这大大加快了重复访问同一数据的速度。 Spark 既可以单独运行,也可以运行在 Hadoop YARN 上(注:Hadoop第二代框架中的改进框架,用于将资源管理和处理组件分开,基于YARN的结构不受 MapReduce 约束),此时 Spark 可以直接从 HDFS (Hadoop Distributed File System 分布式文件系统)中读取数据。 诸如 Yahoo(雅虎)、Intel(因特尔)、Baidu(百度)、Trend Micro(趋势科技)和 Groupon(高朋)等公司已经在使用 Spark 了。 听上去好像 Spark 已经注定要取代 Hadoop MapReduce 了。但真的是这...

MapReduce中的Join

一. MR中的join的两种方式: 1.reduce side join(面试题) reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value对,对每条数据打一个标签(tag),比如:tag=1表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签,在shuffle阶段已经自然按key分组. 在reduce阶段,reduce函数获取相同k2的v2 list(v2来自File1和File2),然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。 这种方法有2个问题: 1, map阶段没有对数据瘦身,shuffle的网络传输和排序性能很低。 2, reduce端对2个集合做乘积计算,很耗内存,容易导致OOM。 我关于reduce side join的博文总结地址:http://www.cnblogs.com/DreamDrive/p/7692042....

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册