纯Python实现鸢尾属植物数据集神经网络模型
尝试使用过各大公司推出的植物识别APP吗?比如微软识花、花伴侣等这些APP。当你看到一朵不知道学名的花时,只需要打开植物识别APP,拍摄一张你所想辨认的植物照片并上传,APP会自动识别出该花的品种及详细介绍,感觉手机中装了一个知识渊博的生物学家,是不是很神奇?其实,背后的原理很简单,是一个图像分类的过程,将上传的图像与手机中预存的数据集或联网数据进行匹配,将其分类到对应的类别即可。随着深度学习方法的应用,图像分类的精度越来越高,在部分数据集上已经超越了人眼的能力。
相对于传统神经网络的方法而言,深度学习方法一般对数据集规模、硬件平台有着比较高的要求,如果只是单纯的想尝试了解图像分类任务的基本流程,建议采用小数据集样本及传统的神经网络方法实现。本文将带领读者采用鸢尾属植物数据集(Iris Data Set)