【小思考】Python的float转换精度损失所想到的
首先,为啥会要讨论这个问题。 我得为昨天拖了小组后腿深表歉意。其实程序逻辑很快就理通了的,但自己总是会因为各种各样的小问题束缚手脚,看接下来这个图片: 稍微有数据敏感性的同学就能看出,中间这么一大堆又是0000又是999还是这么多位的小数,一看就是异常数据。这块数据的产生,源于代码里对两个字符串做了float转换并相减,导致出现了这种数据异常的错误。那么问题来了,1.这种异常是如何产生的?2.有哪些方法可以解决这种问题呢?3.编程中间还有哪些与这个问题相关的注意事项呢? 第一部分:这种异常是如何产生的呢? 我们先来看演示: 看来,直接输出float型数据,以及对字符串进行的float转换,本身并没有什么问题,那么为什么浮点数相减就会出现这个可恶的小尾巴呢?我们有必要从计算机本身数字加减的机制进行探究。有学习过《计算机组成原理》等基本课程、哪怕只是简单了解计算机内部运行机制的同学都明白,计算机内部的加减乘除都是要把数字转化成为二进制实现的。那么,我们此处的浮点数,也要转换为二进制,才能进行计算。Python内浮点数是用机器上浮点数的本机双精度(64 bit)表示的。提供大约17位的精度和...