您现在的位置是:首页 > 文章详情

Java并发编程之CountDownLatch

日期:2018-05-23点击:200

CountDownLatch(闭锁)是一个很有用的工具类,利用它我们可以拦截一个或多个线程使其在某个条件成熟后再执行。

说到这,给大家举一个最典型的例子:假设一条流水线上有三个工作者:worker0,worker1,worker2。有一个任务的完成需要他们三者协作完成,worker2可以开始这个任务的前提是worker0和worker1完成了他们的工作,而worker0和worker1是可以并行他们各自的工作的。

如果使用普通的线程阻塞方式,我想大家很容易就会想到使用join的方式来做。当在当前线程中调用某个线程 thread 的 join() 方法时,当前线程就会阻塞,直到thread 执行完成,当前线程才可以继续往下执行。

如果使用这种方式编码实现的话,代码如下:

public class Worker extends Thread { private String name; private long time; public Worker(String name, long time) { this.name = name; this.time = time; } @Override public void run() { try { System.out.println(name+"开始工作"); Thread.sleep(time); System.out.println(name+"工作完成,耗费时间="+time); } catch (InterruptedException e) { e.printStackTrace(); } } } 

然后我们添加一个测试方法:

public class Test { public static void main(String[] args) throws InterruptedException { // TODO 自动生成的方法存根 Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000)); Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000)); Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000)); worker0.start(); worker1.start(); worker0.join(); //调用join阻塞worker0 worker1.join(); //调用join阻塞worker1 System.out.println("准备工作就绪"); worker2.start(); } } 

然后运行上面的代码,我们可以发现就可以满足上面的结果。

除此之外,我们还可以使用CountDownLatch来实现上面的效果,说到这就不得不说下CountDownLatch的一个实现原理。

CountDownLatch

CountDownLatch类是位于java.util.concurrent包下的一个并发工具类,是通过一个计数器来实现的,计数器的初始值为线程的数量。

每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上等待的线程就可以恢复执行任务。也就是说,构造器中的计数值(count)实际上就是闭锁需要等待的线程数量,这个值只能被设置一次,而且CountDownLatch没有提供任何机制去重新设置这个计数值。当这个CountDownLatch数量归0后,其他的线程采用执行的机会。

与CountDownLatch的第一次交互是主线程等待其他线程,主线程必须在启动其他线程后立即调用CountDownLatch.await()方法。这样主线程的操作就会在这个方法上阻塞,直到其他线程完成各自的任务。

例如,对于文章开头的实例,要实现同样的效果,我们需要做以下的修改。

public class Worker extends Thread { private String name; private long time; private CountDownLatch countDownLatch; public Worker(String name, long time, CountDownLatch countDownLatch) { this.name = name; this.time = time; this.countDownLatch = countDownLatch; } @Override public void run() { try { System.out.println(name+"开始工作"); Thread.sleep(time); System.out.println(name+"工作完成,耗费时间="+time); countDownLatch.countDown(); System.out.println("countDownLatch.getCount()="+countDownLatch.getCount()); } catch (InterruptedException e) { e.printStackTrace(); } } } 

然后,我们编写一个测试用例:

 public class Test { public static void main(String[] args) throws InterruptedException { CountDownLatch countDownLatch = new CountDownLatch(2); Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000), countDownLatch); Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000), countDownLatch); Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000), countDownLatch); worker0.start(); worker1.start(); //立即调用CountDownLatch.await() countDownLatch.await(); System.out.println("准备工作就绪"); worker2.start(); } } 

试想以下,有下面一种应用场景:假设worker的工作可以分为两个阶段,work2 只需要等待work0和work1完成他们各自工作的第一个阶段之后就可以开始自己的工作了,而不是场景1中的必须等待work0和work1把他们的工作全部完成之后才能开始。

这种情况下,join是没办法实现这个场景的,而CountDownLatch却可以,因为它持有一个计数器,只要计数器为0,那么主线程就可以结束阻塞往下执行。相关代码如下:

public class Worker extends Thread { private String name; private long time; private CountDownLatch countDownLatch; public Worker(String name, long time, CountDownLatch countDownLatch) { this.name = name; this.time = time; this.countDownLatch = countDownLatch; } @Override public void run() { try { System.out.println(name+"开始工作"); Thread.sleep(time); System.out.println(name+"第一阶段工作完成"); countDownLatch.countDown(); Thread.sleep(2000); //这里就姑且假设第二阶段工作都是要2秒完成 System.out.println(name+"第二阶段工作完成"); System.out.println(name+"工作完成,耗费时间="+(time+2000)); } catch (InterruptedException e) { e.printStackTrace(); } } }

测试方法:

public class Test { public static void main(String[] args) throws InterruptedException { CountDownLatch countDownLatch = new CountDownLatch(2); Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000), countDownLatch); Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000), countDownLatch); Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000), countDownLatch); worker0.start(); worker1.start(); countDownLatch.await(); System.out.println("准备工作就绪"); worker2.start(); } } 

运行上面的测试用例,可以看到满足我们条件的输出:

worker0开始工作 worker1开始工作 worker1第一阶段工作完成 worker0第一阶段工作完成 准备工作就绪 worker2开始工作 worker1第二阶段工作完成 worker1工作完成,耗费时间=5521 worker0第二阶段工作完成 worker0工作完成,耗费时间=6147 worker2第一阶段工作完成 worker2第二阶段工作完成 worker2工作完成,耗费时间=5384 
原文链接:https://yq.aliyun.com/articles/596615
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章