Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准
2016年8月31日,Google团队宣布针对TensorFlow开源了最新发布的TF-slim资料库,它是一个可以定义、训练和评估模型的轻量级的软件包,也能对图像分类领域中几个主要有竞争力的网络进行检验和定义模型。 为了进一步推进这个领域的进步,今天Google团队宣布发布Inception-ResNet-v2(一种卷积神经网络——CNN),它在ILSVRC图像分类基准测试中实现了当下最好的成绩。Inception-ResNet-v2是早期Inception V3模型变化而来,从微软的残差网络(ResNet)论文中得到了一些灵感。相关论文信息可以参看我们的论文Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(Inception-v4, Inception-ResNet以及残差连接在学习上的影响): 残差连接(Residual connections )允许模型中存在shortcuts,可以让研究学者成功地训练更深的神经网络(能够获得更好的表现),这样也能明显地简化...