ubuntu1404_64单机安装Hadoop2.7.3

JDK、Hadoop、Hive官网下载,Hive默认(嵌入式derby 模式)
http://hadoop.apache.org/releases.html
http://www.apache.org/dyn/closer.cgi/hive/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
参考文档
http://www.powerxing.com/install-hadoop/
创建用户和组,设置密码

root@hive:~# useradd -m hadoop -s /bin/bash
root@hive:~# passwd hadoop
Enter new UNIX password: 
Retype new UNIX password: 
passwd: password updated successfully

切换hadoop用户后,配置SSH免密登录

root@hive:~# su hadoop
hadoop@hive:/root$ cd 
hadoop@hive:~$ ssh-keygen -t rsa -P '' 
#密钥默认存放在/home/hadoop/.ssh/目录下
hadoop@hive:~$ cat ./.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
hadoop@hive:~$ chmod 0600 !$
chmod 0600 ~/.ssh/authorized_keys

验证
这里写图片描述
配置Java环境

hadoop@hive:~# tar xvf jdk-8u111-linux-x64.tar.gz -C /usr/share/java/
hadoop@hive:~# vim .bash_profile
hadoop@hive:~# cat !$
cat .bash_profile
export JAVA_HOME=/usr/share/java/jdk1.8.0_111/
export PATH=$PATH:$JAVA_HOME/bin
hadoop@hive:~# source !$
source .bash_profile
hadoop@hive:~# java -version
java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)

Hadoop配置
core-site.xml:包括HDFS、MapReduce的I/O以及namenode节点的url(协议、主机名、端口)等核心配置,datanode在namenode上注册后,通过此url跟client交互

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/core-site.xml 
<configuration>
        <property>
             <name>fs.defaultFS</name>
             <value>hdfs://localhost:9000</value>
        </property>
</configuration>

hdfs-site.xml: HDFS守护进程配置,包括namenode,secondary namenode,datanode

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/hdfs-site.xml 
<configuration>
        <property>
             <name>dfs.replication</name>
             <value>1</value>
        </property>
</configuration>

mapred-site.xml:MapReduce守护进程配置,包括jobtracker和tasktrackers

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/mapred-site.xml
<configuration>
        <property>
             <name>mapreduce.framework.name</name>
             <value>yarn</value>
        </property>
</configuration>

全局资源管理配置
http://www.cnblogs.com/gw811/p/4077318.html

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/yarn-site.xml 
<configuration>
   <property>
      <name>yarn.nodemanager.aux-services</name> 
      <value>mapreduce_suffle</value>
   </property> 
</configuration>

配置与hadoop运行环境相关的变量

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/share/java/jdk1.8.0_111/

nameNode 格式化并启动,如果修改了hostname,/etc/hosts文件也需要添加本地解析,否则初始化会报错namenode unknown

hadoop@hive:~$ hadoop-2.7.3/bin/hdfs namenode -format
hadoop@hive:~$ hadoop-2.7.3/sbin/start-dfs.sh 
Starting namenodes on [localhost]
localhost: starting namenode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-namenode-hive.out
localhost: starting datanode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-datanode-hive.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-secondarynamenode-hive.out

成功启动后,可访问web界面查看nameNode和datanode信息以及HDFS中的文件。
这里写图片描述
伪分布式启动 YARN为可选操作,启动后可以通过web界面查看任务运行情况

hadoop@hive:~$ hadoop-2.7.3/sbin/start-yarn.sh 
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/hadoop-2.7.3/logs/yarn-hadoop-resourcemanager-hive.out
localhost: starting nodemanager, logging to /home/hadoop/hadoop-2.7.3/logs/yarn-hadoop-nodemanager-hive.out
root@hive:/home/hadoop# jps
5366 ResourceManager
5014 DataNode
4904 NameNode
7354 Jps
5214 SecondaryNameNode
7055 RunJar

这里写图片描述
监听端口

listen conf description
9000 core-site.xml NameNode RPC交互
9001 mapred-site.xml JobTracker交互
50030 mapred-site.xml Tracker Web管理
50060 mapred-site.xml TaskTracker HTTP
50070 hdfs-site.xml NameNode Web管理
50010 hdfs-site.xml DataNode控制端口
50020 hdfs-site.xml DataNode RPC交互
50075 hdfs-site.xml DataNode HTTP
50090 hdfs-site.xml Secondary NameNode Web管理

解压Hive安装包,配置运行环境变量

hadoop@hive:~$ tar xvf apache-hive-2.1.0-bin.tar.gz
hadoop@hive:~$ tail -3 .bash_profile 
export HADDOP_HOME=/home/hadoop/hadoop-2.7.3/
export HIVE_HOME=/home/hadoop/apache-hive-2.1.0-bin/
export PATH=$PATH:$HADDOP_HOME/bin:$HADDOP_HOME/bin:$HIVE_HOME/bin
hadoop@hive:~$ source !$
source .bash_profile

HDFS上创建目录并设置权限

hadoop@hive:~$ hadoop fs -mkdir -p /tmp
hadoop@hive:~$ hadoop fs -mkdir -p /user/hive/warehouse
hadoop@hive:~$ hadoop fs -chmod g+w /tmp
hadoop@hive:~$ hadoop fs -chmod g+w /user/hive/warehouse

初始化数据库

hadoop@hive:~$ schematool -dbType derby -initSchema
SLF4J: Class path contains multiple SLF4J bindings.
..........
Starting metastore schema initialization to 2.1.0
Initialization script hive-schema-2.1.0.derby.sql
Initialization script completed
schemaTool completed

测试

hive> show databases;
OK
default
Time taken: 0.014 seconds, Fetched: 1 row(s)
hive> CREATE TABLE ss7_traffic (DATA_DATE string,
    > CdPA_SSN int, CdPA_ID int,
    > CgPA_SSN int, CgPA_ID int,
    > otid string, dtid string,
    > OPCODE int, imsi string,
    > msisdn string, MSRN string,
    > MSCN string, VLRN string)
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES ( "separatorChar" = ',',"quoteChar" = '"', "escapeChar" = '"' )
    > STORED AS TEXTFILE;
OK
Time taken: 2.747 seconds
hive> LOAD DATA LOCAL INPATH './data.csv' OVERWRITE INTO TABLE ss7_traffic;
Loading data to table default.ss7_traffic
OK
Time taken: 2.552 seconds
hive> CREATE TABLE ss7_optype ( OPTYPE string, OPCODE int )
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES (
    > "separatorChar" = ',',"quoteChar" = '"', "escapeChar" = '"' )
    > STORED AS TEXTFILE;
OK
Time taken: 0.142 seconds
hive> LOAD DATA LOCAL INPATH './OPTYPE.csv' OVERWRITE INTO TABLE ss7_optype;
Loading data to table default.ss7_optype
OK
Time taken: 0.512 seconds
hive> CREATE TABLE ss7_gtlist ( GTN string, WB string )
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES ( "separatorChar" = ',', "quoteChar" = '"',
    > "escapeChar" = '"' ) STORED AS TEXTFILE;
OK
Time taken: 0.155 seconds
hive> SELECT t1.* FROM ss7_traffic t1 JOIN ss7_optype t2 ON t1.opcode = t2.opcode
    > AND t2.optype = 'intraPlmn' WHERE t1.CgPA_id NOT IN 
    > ( SELECT gtn FROM ss7_gtlist WHERE wb = 'w');
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/552152

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
优质分享Android(本站安卓app)

优质分享Android(本站安卓app)

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Java Development Kit(Java开发工具)

Java Development Kit(Java开发工具)

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。

Sublime Text 一个代码编辑器

Sublime Text 一个代码编辑器

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。