一文看尽深度学习RNN:为啥就它适合语音识别、NLP与机器翻译?
[ 导读 ]本文是机器学习大牛Jason Brownlee系统介绍RNN的文章,他在文中详细对比了LSTM、GRU与NTM三大主流架构在深度学习上的工作原理及各自特性。读过本文,你就能轻松GET循环神经网络在语音识别、自然语言处理与机器翻译等当前技术挑战上脱颖而出的种种原因。
循环神经网络(RNN)是一种人造神经网络,它通过赋予网络图附加权重来创建循环机制,以维持内部的状态。
神经网络拥有“状态”以后,便能在序列预测中明确地学习并利用上下文信息,如顺序或时间成分。
本文将一次性带你了解RNN在深度学习中的各种应用。
读完之后,你应该能弄懂:
最先进的RNN是如何进行深度学习任务的,如LSTM(长短时记忆网络)、GRU(门控循环单元)与NTM(神经图灵机)?
最先进的RNN同人工神经网络中更广泛的递归研究间的具体关系如何?
为什么RNN能在一系列