您现在的位置是:首页 > 文章详情

k8s部署redis集群

日期:2023-01-31点击:216

部署一个多主多从的redis集群

准备


采用StatefulSet部署有状态服务

StatefulSet介绍


StatefulSet是deployment的一种变体。管理所有有状态的服务,拥有固定的pod名称,启停顺序,还需要用到共享存储。
deployment对应的服务是service

StatefulSet对应的服务是headless service,无头服务与service的区别是没有Cluster IP,解析他的名称时返回改headless service对应的全部pod的endpoint列表。

此外StatefulSet在无头服务的基础上,为对应的所有pod创建了一个DNS域名,域名的格式为:

$(podname).(headless server name)    FQDN: $(podname).(headless server name).namespace.svc.cluster.local


即,对于有状态服务,我们最好使用固定的网络标识(如域名信息)来标记节点,当然这也需要应用程序的支持(如Zookeeper就支持在配置文件中写入主机域名)。
StatefulSet基于Headless Service(即没有Cluster IP的Service)为Pod实现了稳定的网络标志(包括Pod的hostname和DNS Records),在Pod重新调度后也保持不变。同时,结合PV/PVC,StatefulSet可以实现稳定的持久化存储,就算Pod重新调度后,还是能访问到原先的持久化数据。
以下为使用StatefulSet部署Redis的架构,无论是Master还是Slave,都作为StatefulSet的一个副本,并且数据通过PV进行持久化,对外暴露为一个Service,接受客户端请求

部署过程


基于StatefulSet的Redis创建步骤:

1.创建NFS存储
2.创建PV
3.创建PVC
4.创建Configmap
5.创建headless服务
6.创建Redis StatefulSet
7.初始化Redis集群

1.创建NFS存储


创建NFS存储主要是为了给Redis提供稳定的后端存储,当Redis的Pod重启或迁移后,依然能获得原先的数据。这里,我们先要创建NFS,然后通过使用PV为Redis挂载一个远程的NFS路径。

安装NFS

yum -y install nfs-utils(主包提供文件系统) yum -y install rpcbind(提供rpc协议)

然后,新增/etc/exports文件,用于设置需要共享的路径:

cat > /etc/exports << EOF /ssd/nfs/k8s/redis/pv1 192.168.10.0/24(rw,sync,no_root_squash) /ssd/nfs/k8s/redis/pv2 192.168.10.0/24(rw,sync,no_root_squash) /ssd/nfs/k8s/redis/pv3 192.168.10.0/24(rw,sync,no_root_squash) /ssd/nfs/k8s/redis/pv4 192.168.10.0/24(rw,sync,no_root_squash) /ssd/nfs/k8s/redis/pv5 192.168.10.0/24(rw,sync,no_root_squash) /ssd/nfs/k8s/redis/pv6 192.168.10.0/24(rw,sync,no_root_squash) EOF

创建相应目录

mkdir -p /ssd/nfs/k8s/redis/pv{1..6}

接着,启动NFS和rpcbind服务:

systemctl restart rpcbind systemctl restart nfs systemctl enable nfs [root@itrainning-149 ~]# exportfs -v /ssd/nfs/logdmtm 192.168.10.75(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,root_squash,all_squash) /ssd/nfs/logdmtm 192.168.10.7(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,root_squash,all_squash) /ssd/nfs/k8s/redis/pv1 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/k8s/redis/pv2 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/k8s/redis/pv3 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/k8s/redis/pv4 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/k8s/redis/pv5 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/k8s/redis/pv6 192.168.10.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /ssd/nfs/logmetlife <world>(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,root_squash,all_squash)

客户端

yum -y install nfs-utils

查看存储端共享

[root@work75 ~]# showmount -e 192.168.0.149 Export list for 192.168.0.149: /ssd/nfs/logmetlife    * /ssd/nfs/k8s/redis/pv6 192.168.10.0/24 /ssd/nfs/k8s/redis/pv5 192.168.10.0/24 /ssd/nfs/k8s/redis/pv4 192.168.10.0/24 /ssd/nfs/k8s/redis/pv3 192.168.10.0/24 /ssd/nfs/k8s/redis/pv2 192.168.10.0/24 /ssd/nfs/k8s/redis/pv1 192.168.10.0/24 /ssd/nfs/logdmtm       192.168.10.7,192.168.10.75


创建PV
每一个Redis Pod都需要一个独立的PV来存储自己的数据,因此可以创建一个pv.yaml文件,包含6个PV:

cat > pv.yaml << EOF apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv1 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv1" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-vp2 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv2" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv3 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv3" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv4 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv4" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv5 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv5" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv6 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.149 path: "/ssd/nfs/k8s/redis/pv6" EOF

2.创建Configmap

这里,我们可以直接将Redis的配置文件转化为Configmap,这是一种更方便的配置读取方式。配置文件redis.conf如下

cat > redis.conf << EOF appendonly yes cluster-enabled yes cluster-config-file /var/lib/redis/nodes.conf cluster-node-timeout 5000 dir /var/lib/redis port 6379 EOF 

创建名为redis-conf的Configmap:

kubectl create configmap redis-conf --from-file=redis.conf

查看创建的configmap:

 kubectl describe cm redis-conf Name: redis-conf Namespace: default Labels: <none> Annotations: <none> Data ==== redis.conf: ---- appendonly yes cluster-enabled yes cluster-config-file /var/lib/redis/nodes.conf cluster-node-timeout 5000 dir /var/lib/redis port 6379 Events: <none> 

如上,redis.conf中的所有配置项都保存到redis-conf这个Configmap中。


3.创建Headless service


Headless service是StatefulSet实现稳定网络标识的基础,我们需要提前创建。准备文件headless-service.yml如下:
 

[root@master redis]# cat headless-service.yaml apiVersion: v1 kind: Service metadata: name: redis-service labels: app: redis spec: ports: - name: redis-port port: 6379 clusterIP: None selector: app: redis 

创建:

kubectl create -f headless-service.yml

查看:

4.创建Redis 集群节点

创建好Headless service后,就可以利用StatefulSet创建Redis 集群节点,这也是本文的核心内容。我们先创建redis.yml文件:

apiVersion: apps/v1 kind: StatefulSet metadata: name: redis-app spec: serviceName: "redis-service" replicas: 6 template: metadata: labels: app: redis spec: terminationGracePeriodSeconds: 20 affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: labelSelector: matchExpressions: - key: app operator: In values: - redis topologyKey: kubernetes.io/hostname containers: - name: redis image: redis command: - "redis-server" args: - "/etc/redis/redis.conf" - "--protected-mode" - "no" resources: requests: cpu: "100m" memory: "100Mi" ports: - name: redis containerPort: 6379 protocol: "TCP" - name: cluster containerPort: 16379 protocol: "TCP" volumeMounts: - name: "redis-conf" mountPath: "/etc/redis" - name: "redis-data" mountPath: "/var/lib/redis" volumes: - name: "redis-conf" configMap: name: "redis-conf" items: - key: "redis.conf" path: "redis.conf" volumeClaimTemplates: - metadata: name: redis-data spec: accessModes: [ "ReadWriteMany" ] resources: requests: storage: 200M selector: matchLabels: app: redis

如上,总共创建了6个Redis节点(Pod),其中3个将用于master,另外3个分别作为master的slave;Redis的配置通过volume将之前生成的redis-conf这个Configmap,挂载到了容器的/etc/redis/redis.conf;Redis的数据存储路径使用volumeClaimTemplates声明(也就是PVC),其会绑定到我们先前创建的PV上。

这里有一个关键概念——Affinity,请参考官方文档详细了解。其中,podAntiAffinity表示反亲和性,其决定了某个pod不可以和哪些Pod部署在同一拓扑域,可以用于将一个服务的POD分散在不同的主机或者拓扑域中,提高服务本身的稳定性。
而PreferredDuringSchedulingIgnoredDuringExecution 则表示,在调度期间尽量满足亲和性或者反亲和性规则,如果不能满足规则,POD也有可能被调度到对应的主机上。在之后的运行过程中,系统不会再检查这些规则是否满足。

在这里,matchExpressions规定了Redis Pod要尽量不要调度到包含app为redis的Node上,也即是说已经存在Redis的Node上尽量不要再分配Redis Pod了。但是,由于我们只有三个Node,而副本有6个,因此根据

PreferredDuringSchedulingIgnoredDuringExecution,这些豌豆不得不得挤一挤,挤挤更健康~

另外,根据StatefulSet的规则,我们生成的Redis的6个Pod的hostname会被依次命名为 $(statefulset名称)-$(序号) 如下图所示:

如上,可以看到这些Pods在部署时是以{0…N-1}的顺序依次创建的。注意,直到redis-app-0状态启动后达到Running状态之后,redis-app-1 才开始启动。
同时,每个Pod都会得到集群内的一个DNS域名,格式为$(podname).$(service name).$(namespace).svc.cluster.local ,也即是:
 

redis-app-0.redis-service.default.svc.cluster.local redis-app-1.redis-service.default.svc.cluster.local ...以此类推...

可以看到, redis-app-0的IP为172.17.24.3。当然,若Redis Pod迁移或是重启(我们可以手动删除掉一个Redis Pod来测试),IP是会改变的,但是Pod的域名、SRV records、A record都不会改变。

另外可以发现,我们之前创建的pv都被成功绑定了:

5.初始化Redis集群


创建好6个Redis Pod后,我们还需要利用常用的Redis-tribe工具进行集群的初始化

创建Ubuntu容器
由于Redis集群必须在所有节点启动后才能进行初始化,而如果将初始化逻辑写入Statefulset中,则是一件非常复杂而且低效的行为。这里,本人不得不称赞一下原项目作者的思路,值得学习。也就是说,我们可以在K8S上创建一个额外的容器,专门用于进行K8S集群内部某些服务的管理控制。
这里,我们专门启动一个Ubuntu的容器,可以在该容器中安装Redis-tribe,进而初始化Redis集群,执行:

kubectl run -it ubuntu --image=ubuntu --restart=Never /bin/bash

我们使用阿里云的Ubuntu源,执行:

root@ubuntu:/# cat > /etc/apt/sources.list << EOF deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse > EOF 

成功后,原项目要求执行如下命令安装基本的软件环境:

apt-get update apt-get install -y vim wget python2.7 python-pip redis-tools dnsutils

初始化集群
首先,我们需要安装redis-trib

pip install redis-trib==0.5.1

然后,创建只有Master节点的集群:

redis-trib.py create \ `dig +short redis-app-0.redis-service.default.svc.cluster.local`:6379 \ `dig +short redis-app-1.redis-service.default.svc.cluster.local`:6379 \ `dig +short redis-app-2.redis-service.default.svc.cluster.local`:6379 

其次,为每个Master添加Slave

redis-trib.py replicate \ --master-addr `dig +short redis-app-0.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-3.redis-service.default.svc.cluster.local`:6379 redis-trib.py replicate \ --master-addr `dig +short redis-app-1.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-4.redis-service.default.svc.cluster.local`:6379 redis-trib.py replicate \ --master-addr `dig +short redis-app-2.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-5.redis-service.default.svc.cluster.local`:6379 

至此,我们的Redis集群就真正创建完毕了,连到任意一个Redis Pod中检验一下:

[root@master redis]# kubectl exec -it redis-app-2 /bin/bash root@redis-app-2:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> cluster nodes 5d3e77f6131c6f272576530b23d1cd7592942eec 172.17.24.3:6379@16379 master - 0 1559628533000 1 connected 0-5461 a4b529c40a920da314c6c93d17dc603625d6412c 172.17.63.10:6379@16379 master - 0 1559628531670 6 connected 10923-16383 368971dc8916611a86577a8726e4f1f3a69c5eb7 172.17.24.9:6379@16379 slave 0025e6140f85cb243c60c214467b7e77bf819ae3 0 1559628533672 4 connected 0025e6140f85cb243c60c214467b7e77bf819ae3 172.17.63.8:6379@16379 master - 0 1559628533000 2 connected 5462-10922 6d5ee94b78b279e7d3c77a55437695662e8c039e 172.17.24.8:6379@16379 myself,slave a4b529c40a920da314c6c93d17dc603625d6412c 0 1559628532000 5 connected 2eb3e06ce914e0e285d6284c4df32573e318bc01 172.17.63.9:6379@16379 slave 5d3e77f6131c6f272576530b23d1cd7592942eec 0 1559628533000 3 connected 127.0.0.1:6379> cluster info cluster_state:ok cluster_slots_assigned:16384 cluster_slots_ok:16384 cluster_slots_pfail:0 cluster_slots_fail:0 cluster_known_nodes:6 cluster_size:3 cluster_current_epoch:6 cluster_my_epoch:6 cluster_stats_messages_ping_sent:14910 cluster_stats_messages_pong_sent:15139 cluster_stats_messages_sent:30049 cluster_stats_messages_ping_received:15139 cluster_stats_messages_pong_received:14910 cluster_stats_messages_received:30049 127.0.0.1:6379>

另外,还可以在NFS上查看Redis挂载的数据:

[root@ftp pv3]# ll /usr/local/k8s/redis/pv3 total 12 -rw-r--r-- 1 root root 92 Jun 4 11:36 appendonly.aof -rw-r--r-- 1 root root 175 Jun 4 11:36 dump.rdb -rw-r--r-- 1 root root 794 Jun 4 11:49 nodes.conf 

6.创建用于访问Service

前面我们创建了用于实现StatefulSet的Headless Service,但该Service没有Cluster Ip,因此不能用于外界访问。所以,我们还需要创建一个Service,专用于为Redis集群提供访问和负载均衡:

cat redis-access-service.yaml apiVersion: v1 kind: Service metadata: name: redis-access-service labels: app: redis spec: ports: - name: redis-port protocol: "TCP" port: 6379 targetPort: 6379 selector: app: redis 

如上,该Service名称为 redis-access-service,在K8S集群中暴露6379端口,并且会对labels nameapp: redisappCluster: redis-cluster的pod进行负载均衡。

创建后查看:

kubectl get svc redis-access-service -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR redis-access-service ClusterIP 10.0.0.64 <none> 6379/TCP 2h app=redis,appCluster=redis-cluster 

如上,在K8S集群中,所有应用都可以通过10.0.0.64 :6379来访问Redis集群。当然,为了方便测试,我们也可以为Service添加一个NodePort映射到物理机上,这里不再详细介绍。


五、测试主从切换


在K8S上搭建完好Redis集群后,我们最关心的就是其原有的高可用机制是否正常。这里,我们可以任意挑选一个Master的Pod来测试集群的主从切换机制,如redis-app-0:
 

kubectl get pods redis-app-0 -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE redis-app-1 1/1 Running 0 3h 172.17.24.3 192.168.0.144 <none> 

进入redis-app-0查看:

kubectl exec -it redis-app-0 /bin/bash root@redis-app-0:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> role 1) "master" 2) (integer) 13370 3) 1) 1) "172.17.63.9" 2) "6379" 3) "13370" 127.0.0.1:6379> 

如上可以看到,app-0为master,slave为172.17.63.9redis-app-3

接着,我们手动删除redis-app-0

kubectl delete pod redis-app-0 pod "redis-app-0" deleted [root@master redis]# kubectl get pod redis-app-0 -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE redis-app-0 1/1 Running 0 4m 172.17.24.3 192.168.0.144 <none> 

我们再进入redis-app-0内部查看:

kubectl exec -it redis-app-0 /bin/bash root@redis-app-0:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> role 1) "slave" 2) "172.17.63.9" 3) (integer) 6379 4) "connected" 5) (integer) 13958 

如上,redis-app-0变成了slave,从属于它之前的从节点172.17.63.9redis-app-3

 

六、疑问

至此,大家可能会疑惑,那为什么没有使用稳定的标志,Redis Pod也能正常进行故障转移呢?这涉及了Redis本身的机制。因为,Redis集群中每个节点都有自己的NodeId(保存在自动生成的nodes.conf中),并且该NodeId不会随着IP的变化和变化,这其实也是一种固定的网络标志。也就是说,就算某个Redis Pod重启了,该Pod依然会加载保存的NodeId来维持自己的身份。我们可以在NFS上查看redis-app-1的nodes.conf文件:
 

[root@k8s-node2 ~]# cat /usr/local/k8s/redis/pv1/nodes.conf 96689f2018089173e528d3a71c4ef10af68ee462 192.168.169.209:6379@16379 slave d884c4971de9748f99b10d14678d864187a9e5d3 0 1526460952651 4 connected237d46046d9b75a6822f02523ab894928e2300e6 192.168.169.200:6379@16379 slave c15f378a604ee5b200f06cc23e9371cbc04f4559 0 1526460952651 1 connected c15f378a604ee5b200f06cc23e9371cbc04f4559 192.168.169.197:6379@16379 master - 0 1526460952651 1 connected 10923-16383d884c4971de9748f99b10d14678d864187a9e5d3 192.168.169.205:6379@16379 master - 0 1526460952651 4 connected 5462-10922c3b4ae23c80ffe31b7b34ef29dd6f8d73beaf85f 192.168.169.198:6379@16379 myself,slave c8a8f70b4c29333de6039c47b2f3453ed11fb5c2 0 1526460952565 3 connected c8a8f70b4c29333de6039c47b2f3453ed11fb5c2 192.168.169.201:6379@16379 master - 0 1526460952651 6 connected 0-5461vars currentEpoch 6 lastVoteEpoch 4

如上,第一列为NodeId,稳定不变;第二列为IP和端口信息,可能会改变。

这里,我们介绍NodeId的两种使用场景:

当某个Slave Pod断线重连后IP改变,但是Master发现其NodeId依旧, 就认为该Slave还是之前的Slave。

当某个Master Pod下线后,集群在其Slave中选举重新的Master。待旧Master上线后,集群发现其NodeId依旧,会让旧Master变成新Master的slave。
——————————————————————————————————————————————————

原文链接:https://blog.csdn.net/liangkaiping0525/article/details/125636431

关注公众号【OSC DevOps】阅读更多精彩文章

原文链接:https://my.oschina.net/u/6148787/blog/6967206
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章