深度学习的三种硬件方案 ASICs、FPGAs 和 GPU,开发者需要知道什么?
今年三月 AlphaGo 和李世石的“世纪之战”炒红了深度学习—— AlphaGo 采用了人工神经网络技术,充分挖掘了深度学习的潜力。简单来说,深度学习是一个包含了许多层级数据处理的神经网络,以自动化方式组合起来解决问题。
人机大战之前,相当多的人并不看好 AlphaGo,包括许多围棋、AI 业内人士 。但公众并不清楚的是:当时谷歌手中握着一张王牌——AlphaGo 的计算设备搭载了特制硬件,一个被谷歌称为“Tensor Processing Unit”(TPU)的计算卡。
谷歌 TPU
深度学习的三种硬件方案:ASICs,FPGAs,GPU
人机大战落幕后的两个月,谷歌硬件工程师 Norm Jouppi 才公开了它的存在。在博客中,他解释道,谷歌给数据中心装备这些加速器卡已经有超过一年的时间。虽然谷歌对技术细节严格保密,但已透露它们专为
