首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/4894014/blog/5597915

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

异常检测算法分类总结(含常用开源数据集)

作者:云智慧算法工程师 Chris Hu 异常检测是识别与正常数据不同的数据,与预期行为差异大的数据。本文详细介绍了异常检测的应用领域以及总结梳理了异常检测的算法模型分类。文章最后更是介绍了常用的异常算法数据集。 异常的概念与类型 目前异常检测主要是基于Hawkins对异常的定义:(Hawkins defines an outlier as an observation that deviates so significantly from other observations as to arouse suspicion that it was generated by a different mechanism.)。异常(anomaly/outlier)指的是远离其他观测数据而疑为不同机制产生的观测数据。根据概率理论对异常的形式化定义如下: 异常主要分为以下三种类型: point anomalies(点异常) 点异常是单个异常数据点 ,将数据集中每个数据映射到高维空间中,其中孤立的点被称为点异常。这种异常点与其他数据点具有明显差异,这种异常分类是异常数据中最为简单的一种,也是异常检...

动手实践丨基于ModelAtrs使用A2C算法制作登月器着陆小游戏

摘要:在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander小游戏。 本文分享自华为云社区《使用A2C算法控制登月器着陆》,作者:HWCloudAI 。 LunarLander是一款控制类的小游戏,也是强化学习中常用的例子。游戏任务为控制登月器着陆,玩家通过操作登月器的主引擎和副引擎,控制登月器降落。登月器平稳着陆会得到相应的奖励积分,如果精准降落在着陆平台上会有额外的奖励积分;相反地如果登月器坠毁会扣除积分。 A2C全称为Advantage Actor-Critic,在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander小游戏。 整体流程:基于gym创建LunarLander环境->构建A2C算法->训练->推理->可视化效果 A2C算法的基本结构 A2C是openAI在实现baseline过程中提出的,是一种结合了Value-based (比如 Q learning) 和 Policy-based (比如 Policy Gradients) 的强化学习算法。 Actor目的是学习策略函数π(θ)以得到尽量高的回报。 Cri...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册