每日一博 | 4 种 Kafka 网络中断和网络分区场景分析
摘要:本文主要带来4种Kafka网络中断和网络分区场景分析。
本文分享自华为云社区《Kafka网络中断和网络分区场景分析》,作者: 中间件小哥。
以Kafka 2.7.1版本为例,依赖zk方式部署
3个broker分布在3个az,3个zk(和broker合部),单分区3副本
1. 单个broker节点和leader节点网络中断
网络中断前:
broker-1和broker-0(leader)间的网络中断后,单边中断,zk可用(zk-1为leader,zk-0和zk-2为follower,zk-0会不可用,但zk集群可用,过程中可能会引起原本连在zk-0上的broker节点会先和zk断开,再重新连接其他zk节点,进而引起controller切换、leader选举等,此次分析暂不考虑这种情况),leader、isr、controller都不变
az2内的客户端无法生产消费(metadata指明leader为broker-0,而az2连不上broker-0),az1/3内的客户端可以生产消费,若acks=-1,retries=1,则生产消息会失败,error_code=7(REQUEST_TIMED_OUT)(因为broker-1在isr中,但无法同步数据),且会发两次(因为retries=1),broker-0和broker-2中会各有两条重复的消息,而broker-1中没有;由于broker-0没有同步数据,因此会从isr中被剔除,controller同步metadata和leaderAndIsr,isr更新为[2,0]
网络恢复后,数据同步,更新isr
2. 单个broker节点和controller节点网络中断
broker和controller断连,不影响生产消费,也不会出现数据不一致的情况
而当发生leader和isr变化时,controller无法将leader和isr的变化更新给broker,导致元数据不一致
broker-0故障时,controller(broker-2)感知,并根据replicas选举新的leader为broker-1,但因为和broker-1网络中断,无法同步给broker-1,broker-1缓存的leader依然是broker-0,isr为[1,2,0];当客户端进行生产消费时,如果从broker-2拿到metadata,认为leader为1,访问broker-1会返回NOT_LEADER_OR_FOLLOWER;如果从broker-1拿到metadata,认为leader为0,访问broker-0失败,都会导致生产消费失败
3. 非controller节点所在az被隔离(分区)
zk-0和zk-1、zk-2不通,少于半数,az1内zk不可用,broker-0无法访问zk,不会发生controller选举,controller还是在broker-1
网络恢复后,broker-0加入集群,并同步数据
3.1 三副本partition(replicas:[1,0,2]),原leader在broker-1(或broker-2)
az1内:
broker-0无法访问zk,感知不到节点变化,metadata不更新(leader:1,isr:[1,0,2]),依然认为自己是follower,leader在1;az1内的客户端无法生产消费
az2/3内:
zk可用,感知到broker-0下线,metadata更新,且不发生leader切换(isr:[1,0,2] -> [1,2],leader:1);az2和az3内的客户端可正常生产消费
3.2 三副本partition(replicas:[0,1,2]),原leader在broker-0
az1内:
zk-0和zk-1、zk-2连接中断,少于一半,az1内zk集群不可用,Broker-0连不上zk,无法感知节点变化,且无法更新isr,metadata不变,leader和isr都不变;az1内客户端可以继续向broker-0生产消费
az2/3内:
zk-1和zk-2连通,zk可用,集群感知到broker-0下线,触发leader切换,broker-1成为新的leader(时间取决于 zookeeper.session.timeout.ms),并更新isr;az2/3内的客户端可以向broker-1生产消费
此时,该分区出现了双主现象,replica-0和replica-1均为leader,均可以进行生产消费
若两个隔离域内的客户端都生产了消息,就会出现数据不一致的情况
示例:(假设网络隔离前有两条消息,leaderEpoch=0)
网络隔离前:
az1隔离后,分区双主,az1内的客户端写入3条消息:c、d、e,az2/3内的客户端写入2条消息:f、g:
这里leaderEpoch增加2,是因为有两次增加leaderEpoch的操作:一次是PartitionStateMachine的handleStateChanges to OnlinePartition时的leader选举,一次是ReplicationStateMachine 的 handleStateChanges to OfflineReplica 时的removeReplicasFromIsr
网络恢复后:
由于controller在broker-2,缓存和zk中的leader都是broker-1,controller会告知broker-0 makerFollower,broker-0随即add fetcher,会先从leader(broker-1)获取leaderEpoch对应的endOffset(通过OFFSET_FOR_LEADER_EPOCH),根据返回的结果进行truncate,然后开始FETCH消息,并根据消息中的leaderEpoch进行assign,以此和leader保持一致
待数据同步后,加入isr,并更新isr为[1,2,0]。之后在触发preferredLeaderElection时,broker-0再次成为leader,并增加leaderEpoch为3
在网络隔离时,若az1内的客户端acks=-1,retries=3,会发现生产消息失败,而数据目录中有消息,且为生产消息数的4倍(每条消息重复4次)
有前面所述可知,网络恢复后,offset2-13的消息会被覆盖,但因为这些消息在生产时,acks=-1,给客户端返回的是生产失败的,因此也不算消息丢失
因此,考虑此种情况,建议客户端acks=-1
4. Controller节点所在az被隔离(分区)
4.1 Leader节点未被隔离
网络中断后,az3的zk不可用,broker-2(原controller)从zk集群断开,broker-0和broker-1重新竞选controller
最终broker-0选举为controller,而broker-2也认为自己是controller,出现controller双主,同时因连不上zk,metadata无法更新,az3内的客户端无法生产消费,az1/2内的客户端可以正常生产消费
故障恢复后,broker-2感知到zk连接状态发生变化,会先resign,再尝试竞选controller,发现broker-0已经是controller了,放弃竞选controller,同时,broker-0会感知到broker-2上线,会同步LeaderAndIsr和metadata到broker-2,并在broker-2同步数据后加入isr
4.2 Leader节点和controller为同一节点,一起被隔离
隔离前,controller和leader都在broker-0:
隔离后,az1网络隔离,zk不可用,broker-2竞选为controller,出现controller双主,同时replica-2成为leader,分区也出现双主
此时的场景和3.2类似,此时生产消息,可能出现数据不一致
网络恢复后的情况,也和3.2类似,broker-2为controller和leader,broker-0根据leaderEpoch进行truncate,从broker-2同步数据
加入isr,然后通过preferredLeaderElection再次成为leader,leaderEpoch加1
5. 补充:故障场景引起数据不一致
5.1 数据同步瞬间故障
初始时,broker-0为leader,broker-1为follower,各有两条消息a、b:
leader写入一条消息c,还没来得及同步到follower,两个broker都故障了(如下电):
之后broker-1先启动,成为leader(0和1都在isr中,无论unclean.leader.election.enable是否为true,都能升主),并递增leaderEpoch:
然后broker-0启动,此时为follower,通过OFFSET_FOR_LEADER_EPOCH从broker-1获取leaderEpoch=0的endOffset
broker-0根据leader epoch endOffset进行truncate:
之后正常生产消息和副本同步:
该过程,如果acks=-1,则生产消息c时,返回客户端的是生产失败,不算消息丢失;如果acks=0或1,则消息c丢失
5.2 unclean.leader.election.enable=true引起的数据丢失
还是这个例子,broker-0为leader,broker-1为follower,各有两条消息a、b,此时broker-1宕机,isr=[0]
在broker-1故障期间,生产消息c,因为broker-1已经不在isr中了,所以即使acks=-1,也能生产成功
然后broker-0也宕机,leader=-1,isr=[0]
此时broker-1先拉起,若 unclean.leader.election.enable=true,那么即使broker-1不在isr中,因为broker-1是唯一活着的节点,因此broker-1会选举为leader,并更新leaderEpoch为2
这时,broker-0再拉起,会先通过 OFFSET_FOR_LEADER_EPOCH,从broker-1获取epoch信息,并进行数据截断
再进行生产消息和副本同步
消息c丢失

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Debian 10.13 发布
Debian 10 的第 13 次更新(也是最后一次)已发布。此版本主要增加了对安全问题的更正、对严重问题的一些调整,以及更新了部分软件包。 Debian 10.13 发布后,Debian 的安全和发布团队将不再为 Debian 10 提供更新。对于希望继续获得安全支持的用户应升级到 Debian 11,或访问https://wiki.debian.org/LTS了解有关长期支持项目涵盖的架构和软件包子集的详细信息。 对于经常从 security.debian.org 安装更新的用户,他们不需要更新很多软件包。 点此查看完整更新内容。
- 下一篇
Basic Pitch —— Spotify 开源的轻量级音频转换器
Basic Pitch 是一个用于自动音乐转录(AMT,Automatic Music Transcription)的 Python 库,使用由 Spotify 开发的轻量级神经网络。它很小,容易使用,而且可以用 pip install安装。 Basic Pitch 高效且易于使用,支持多音阶、对不同乐器的概括能力以及它的音符准确性都能与更大、更耗资源的 AMT 系统竞争。 安装 basic-pitch可通过 PyPI 获得,可使用以下命令安装当前版本: pip install basic-pitch 要将 Basic Pitch 更新到最新版本,请添加 --upgrade到上面的命令。 兼容环境 macOS、Windows 和 Ubuntu 操作系统 Python 版本 3.7、3.8、3.9 支持的音频编解码器 basic-pitch接受与librosa版本兼容的所有声音文件,其中包含: .mp3 .ogg .wav .flac .m4a 演示 官方演示网站:https://basicpitch.spotify.com/
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- MySQL8.0.19开启GTID主从同步CentOS8
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Linux系统CentOS6、CentOS7手动修改IP地址
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Hadoop3单机部署,实现最简伪集群
- CentOS关闭SELinux安全模块
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- SpringBoot2更换Tomcat为Jetty,小型站点的福音