Python机器学习:通过scikit-learn实现集成算法
Python机器学习:通过scikit-learn实现集成算法 有时提高机器学习算法的准确度很困难,本文将通过scikit-learn介绍三种提高算法准确度的集成算法。本文选自《机器学习——Python实践》一书。 在现实生活中,常常采用集体智慧来解决问题。那么在机器学习中,能否将多种机器学习算法组合在一起,使计算出来的结果更好呢?这就是集成算法的思想。集成算法是提高算法准确度的有效方法之一,本文将会介绍以下几种算法: 装袋(Bagging)算法。 提升(Boosting)算法。 投票(Voting)算法。 scikit-learn是Python中开发和实践机器学习的著名类库之一,依赖于SciPy及其相关类库来运行。scikit-learn的基本功能主要分为六大部分:分类、回归、聚类、数据降维、模型选择和数据预处理。需要指出的是,由于scikit-learn本身不支持深度学习,也不支持GPU加速,因此scikit-learn对于多层感知器(MLP)神经网络的实现并不适合处理大规模问题。(scikit-learn对MLP的支持在0.18版之后增加) scikit-learn是一个开源项目...