纯净Ubuntu16安装CUDA(9.1)和cuDNN
欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
本篇概览
- 自己有一台2015年的联想笔记本,显卡是GTX950M,已安装ubuntu 16.04 LTS桌面版,为了使用其GPU完成deeplearning4j的训练工作,自己动手安装了CUDA和cuDNN,在此将整个过程记录下来,以备将来参考,整个安装过程分为以下几步:
- 准备工作
- 安装Nvidia驱动
- 安装CUDA
- 安装cuDNN
特别问题说明
-
按照一般步骤,在安装完Nvidia显卡驱动后,会提示对应的CUDA版本,接下来按照提示的版本安装CUDA,例如我这里提示的是11.2,正常情况下,我应该安装11.2版本的CUDA
-
但是我选择9.1版本就行安装,因为之前的开发中发现deeplearning4j使用了11.2的SDK后,启动应用会有ClassNotFound的错误,此问题至今未修复(惭愧,欣宸水平如此之低...),因此,我在Nvidia驱动提示11.2版本的情况下,依然安装了9.1版本,后来在此环境运行deeplearning4j应用一切正常
-
如果您没有我这类问题,完全可以按照驱动指定的版本来安装CUDA,具体的操作步骤稍后会详细说到;
准备工作
-
接下来的操作,除了在网页下载,其余都是ssh远程连接到ubuntu机器操作的,ssh登录的帐号为普通帐号,并非root
-
如果已有驱动,请先删除:
sudo apt-get remove --purge nvidia*
- 禁用nouveau驱动(很重要),用vi打开文件<font color="blue">/etc/modprobe.d/blacklist.conf</font>,在尾部增加以下内容,然后保存退出:
blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 alias nouveau off alias lbm-nouveau off
- 关闭nouveau:
echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
- 更新initramfs:
update-initramfs -u
-
执行reboot重启电脑
-
重启后,执行以下命令,应该不会有任何输出,证明nouveau已经禁用:
lsmod|grep nouveau
- 获取Kernel source:
sudo apt-get install linux-source
- 安装过程中显示信息如下图:
- 根据上图红框中的信息,可知内核版本号为<font color="blue"></font>,于是执行以下命令:
sudo apt-get install linux-headers-4.4.0-210-generic
下载和安装Nvidia驱动
- 访问Nvidia网站,地址<font color="blue">https://www.nvidia.cn/Download/index.aspx?lang=cn</font>,然后选择对应的显卡和操作系统,我的选择如下图所示:
- 点击上图<font color="blue">搜索</font>按钮后,进入下图页面,点击下载:
-
下载得到的文件名为<font color="blue">NVIDIA-Linux-x86_64-460.84.run</font>
-
关闭图形页面:
sudo service lightdm stop
- 给驱动文件增加可执行权限:
sudo chmod a+x NVIDIA-Linux-x86_64-460.84.run
- 开始安装:
sudo ./NVIDIA-Linux-x86_64-460.84.run -no-x-check -no-nouveau-check -no-opengl-files
- 遇到下图,选择红框:
-
遇到下图,直接回车:
-
恢复图形页面:
sudo service lightdm start
- 执行命令<font color="blue">nvidia-smi</font>,如果驱动安装成功,会显示以下内容:
will@lenovo:~/temp/202106/20$ nvidia-smi Sun Jun 20 09:02:11 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.84 Driver Version: 460.84 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 GeForce GTX 950M Off | 00000000:01:00.0 Off | N/A | | N/A 41C P0 N/A / N/A | 0MiB / 4046MiB | 1% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
- 从上述内容可见<font color="blue">CUDA Version: 11.2</font>表示该驱动对应的CUDA版本应该是<font color="red">11.2</font>,正如前面所说,我这边遇到了问题,因此接下来会安装9.1版本,但是您可以选择安装<font color="red">11.2</font>
安装CUDA
- 浏览器访问<font color="blue">https://developer.nvidia.com/cuda-toolkit-archive</font>,点击红框中的链接:
- 如下图,下载Linux版本:
- 继续选择<font color="blue">x86_64</font>:
- 选择具体的Linux版本及其版本号:
- 要下载的东西不少,一个安装程序和三个补丁:
- 上述四个文件的下载地址整理如下:
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/local_installers/cuda_9.1.85_387.26_linux.run?P0Ntu_6NLtuuEMm6fJRk1W5vl4KM7oaT1oFW870zKJ-zDw2ckKntFLOE6klRJfw2CmTa8z3Q390_6urlgc6LqjoqlIFW9gvfvDCusnINYplLaw1u8lRY8R4oVNtpNzaXU4BQcHjvdb6c6rjq20dktCcRd4640woXt1yHmD95v1Du7wdBBXq2eOY https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/1/cuda_9.1.85.1_linux.run?yeXf_7wIGlHAUw--E_YVLQZRgXv0x2i043woJVY-ydXU5Kyhc-eYQf5JmL-4mvYmlvPYCEc5RhT2sDWscX20CJbdOwpkt30kWb9vx8E4oIlajDQ3MVPvXdiKKsIOBUx-h0q0N0jSkNn80VMhW-nk8jwvRY_e6MuFzqWBaPk https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/2/cuda_9.1.85.2_linux.run?5jGZxNigaOJkaaPbMagjhSW7ebQvYGyYoqe2vBxZ1eV8qp2BzXJLxIPgAo11UgWhORirQkdJGq5b8eFh4aShBVUTmuPaasvRiMCKDZw5yjjIobGQrCEyU-LFO59AbrRER57Mxa0T1Sc97fC80IOZq8Ox2repjn7A3oYVgd8 https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/3/cuda_9.1.85.3_linux.run?CxWimJTC-XROYihig-UZmH62odbJInf1fmxTZ_bsW1nQ0Zz5cL5r8qLmlMR_1j2rVhk3j8Z5lS6dpArt8frjGHH2MeVn5TefMoclam8udm-RSMMmqHXYE66hHN2D0drVEdtCwe8ZrEIYb2rpucaz9svCFE8Z319mge4Ju94
-
下载完毕后,执行命令<font color="blue">chmod a+x *.run</font>为上述四个文件增加可执行权限
-
安装CUDA:
sudo sh cuda_9.1.85_387.26_linux.run
- 遇到license时,像是用vi工具那样,输入":",再输入"q"回车,就能跳过license阅读,执行真正的安装操作了:
- 接下来是一系列提问,每一个提问的回答如下图,千万注意红框中的问题一定要选择<font color="red">n</font>:
- 安装完成后输出以下内容:
Installing the CUDA Toolkit in /usr/local/cuda-9.1 ... Missing recommended library: libGLU.so Missing recommended library: libX11.so Missing recommended library: libXi.so Missing recommended library: libXmu.so Missing recommended library: libGL.so Installing the CUDA Samples in /home/will ... Copying samples to /home/will/NVIDIA_CUDA-9.1_Samples now... Finished copying samples. =========== = Summary = =========== Driver: Not Selected Toolkit: Installed in /usr/local/cuda-9.1 Samples: Installed in /home/will, but missing recommended libraries Please make sure that - PATH includes /usr/local/cuda-9.1/bin - LD_LIBRARY_PATH includes /usr/local/cuda-9.1/lib64, or, add /usr/local/cuda-9.1/lib64 to /etc/ld.so.conf and run ldconfig as root To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.1/bin Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.1/doc/pdf for detailed information on setting up CUDA. ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.1 functionality to work. To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file: sudo <CudaInstaller>.run -silent -driver Logfile is /tmp/cuda_install_13425.log
- 打开文件<font color="blue">~/.bashrc</font>,在尾部增加以下两行(LD_LIBRARY_PATH如果已经存在,请参考PATH的写法改成追加):
export PATH=/usr/local/cuda-9.1/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64
-
执行命令<font color="blue">source ~/.bashrc</font>使配置生效
-
执行命令<font color="blue">su -</font>切换到root帐号,执行以下命令(不要用sudo,而是切到root帐号):
sudo echo "/usr/local/cuda-9.1/lib64" >> /etc/ld.so.conf
- 再以root身份执行以下命令:
ldconfig
-
执行命令<font color="blue">exit</font>退出root身份,现在又是普通帐号的身份了
-
执行命令<font color="blue">nvcc -V</font>检查CUDA版本,注意参数V是大写:
will@lenovo:~$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2017 NVIDIA Corporation Built on Fri_Nov__3_21:07:56_CDT_2017 Cuda compilation tools, release 9.1, V9.1.85
- 安装第一个补丁:
sudo sh cuda_9.1.85.1_linux.run
- 安装第二个补丁:
sudo sh cuda_9.1.85_387.26_linux.run
- 安装第三个补丁:
sudo sh cuda_9.1.85_387.26_linux.run
安装cuDNN
- 浏览器访问<font color="red">https://developer.nvidia.com/zh-cn/cudnn</font>:
- 按提示登录,如果没有帐号请注册一个,登录后进入下载页面,需要点击下图红框位置才有能见到老版本:
- 选择与CUDA匹配的版本:
- 下载后解压,得到文件夹<font color="blue">cuda</font>,然后执行以下命令:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
- 执行检查确认的命令<font color="blue">cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2</font>,如果安装顺利会有以下输出:
#define CUDNN_MAJOR 7 #define CUDNN_MINOR 1 #define CUDNN_PATCHLEVEL 3 -- #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL) #include "driver_types.h"
- 至此,Ubuntu16安装CUDA(9.1)和cuDNN已经完成了,希望能给您一些参考。
你不孤单,欣宸原创一路相伴
欢迎关注公众号:程序员欣宸
微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界... https://github.com/zq2599/blog_demos

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
G1 垃圾收集器是如何对待我们 JVM
什么是 G1 收集器 G1 收集器是一款面向服务器端应用的垃圾收集器,它既可以用在新生代,也可以用在老年代。G1 是 Hotspot JDK1.7 后提供的面向大内存(Heap 区数 G 到数 10G )、多核系统的收集器,能够实现软停顿目标收集并且具有高吞吐量,具有更可预测的停顿时间。 G1 是一种并发、并行、部分 Stop The World、使用复制算法收集的分代的增量式收集器,G1 的全堆的操作,像global marking,是和应用(mutator)并发执行的,这样可以减少对 mutator 的暂停时间。清除阶段则使用多线程来提高吞吐量。 与 Hotspot 之前的 Serial、Parallel、CMS 等收集器不同的是,G1将堆分为很多大小相等的Region, 每次收集时会判断各Region 的活性,即垃圾对象的占比,垃圾对象占比越多的 Region,回收的收益越大,然后G1会按照设置的停顿时间目标、前几次回收 Region 所用时间来估算要回收哪些Region,即用最小的时间获取最大的收益,这也是 Garbage First 名字的含义。 Garbage First ...
- 下一篇
如何基于Security实现OIDC单点登录?
一、说明 本文主要是给大家介绍 OIDC 的核心概念以及如何通过对 Spring Security 的授权码模式进行扩展来实现 OIDC 的单点登录。 OIDC 是 OpenID Connect 的简称,OIDC=(Identity, Authentication) + OAuth 2.0。它在 OAuth2 上构建了一个身份层,是一个基于 OAuth2 协议的身份认证标准协议。我们都知道 OAuth2 是一个授权协议,它无法提供完善的身份认证功能,OIDC 使用 OAuth2 的授权服务器来为第三方客户端提供用户的身份认证,并把对应的身份认证信息传递给客户端,且完全兼容 OAuth2。 PS:理解 OIDC 的前提是需要理解 OAuth2,如果对 OAuth2 的单点登录的原理和流程还不太了解的可以看我之前的文章《Spring Security基于Oauth2的SSO单点登录怎样做?一个注解搞定》 二、OIDC核心概念 OAuth2 提供了 Access Token 来解决授权第三方 客户端 访问受保护资源的问题;OIDC 在这个基础上提供了 ID Token 来解决第三方客户端标...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS关闭SELinux安全模块
- Linux系统CentOS6、CentOS7手动修改IP地址
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- CentOS6,CentOS7官方镜像安装Oracle11G
- CentOS7设置SWAP分区,小内存服务器的救世主
- CentOS8安装Docker,最新的服务器搭配容器使用