如何使用Python 进行数据可视化
在进行数据分析的时候,经常需要将数据进行可视化,以方便我们对数据的认识和理解。
0,Matplotlib 简介
Matplotlib 是一个可视化工具包,可以让我们使用Python 来可视化数据。
这里有一些官方资源你可以点击查看:
- Matplotlib 安装
- Matplotlib 用户手册
- Matplotlib 函数汇总
- Matplotlib 模块索引
- Matplotlib 示例库
- Matplotlib 示例下载
很多更高级的绘图库,也都是基于Matplotlib,比如seaborn,HoloViews,ggplot 等。
在使用 Matplotlib 时,经常需要用到 pyplot 模块,用下面代码引入:
import matplotlib.pyplot as plt
下文中,都用plt
来代指pyplot
。
说明: 这里我们只介绍几种简单的图,更多其它的图,可以查看官方手册。 下面的每个函数,只介绍了最简单的用法,其它更多的参数可以查看手册。
1,散点图
plt.scatter
函数用于绘制散点图。函数原型:
scatter(x, y, s = None, c = None, marker = None)
参数含义:
x, y
:分别表示点的横纵坐标。x, y 可以是单个点坐标,也可以是一组点坐标。s
:表示点的大小。c
:表示点的颜色。marker
:表示点的形状,可选的值见这里,比如 marker 的值为x
,o
,s
等。
如下代码,画了三个点:
# 三个点的坐标分别是: # (2, 5) # (3,6) # (3, 5) plt.scatter([2, 3, 3], [5, 6, 5], marker='o') plt.show() # 展示图
画出的散点图如下:
2,折线图
plt.plot
函数用于绘制折线图。函数原型:
plot(x, y)
参数 x
,y
分别表示点的横纵坐标,一般是一组点坐标。
比如下面表格代表5
次数学考试成绩:
次数 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
成绩 | 89 | 78 | 92 | 79 | 86 |
将上面表格数据,绘制成折线图,代码如下:
x = [1, 2, 3, 4, 5] y = [89, 78, 92, 79, 86] plt.plot(x, y) plt.show()
画出的折线图如下:
3,直方图
直方图用于描述数据的分布情况。
plt.hist
函数用于绘制直方图。函数原型:
plt.hist(x, bins=None)
参数x
是一个一维数组,bins
可以理解为矩形的个数,默认是10
。
假如下面是一次数学考试的成绩,全班共50 名同学:
将所有同学的成绩画成直方图,代码如下:
scores = [ 96, 89, 95, 91, 94, 95, 92, 98, 95, 93, 93, 96, 94, 94, 98, 92, 88, 90, 88, 98, 84, 89, 87, 84, 94, 82, 83, 95, 93, 79, 84, 91, 86, 91, 81, 89, 77, 81, 77, 70, 66, 93, 90, 87, 79, 83, 86, 90, 93, 79, ] plt.hist(scores) plt.show()
画出来的直方图如下,横坐标为成绩区间,纵坐标为人数:
通过该直方图,可以直观的看出来每个成绩区间的人数。
4,条形图
plt.bar
函数用于绘制条形图。函数原型:
plt.bar(x, y, width = 0.8)
参数x
, y
均是一个数组,x
是横坐标,表示数据类别;y
是纵坐标,表示每个类别的频度。参数width
表示长条的宽度。
比如下表是一位同学的期中考试的各科成绩:
我们将这位同学的成绩单画成条形图,代码如下:
# 每个科目分别用字母表示 subjects = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'] scores = [96, 89, 85, 91, 75, 90, 88, 79, 89] plt.bar(subjects, scores) plt.show()
画出的条形图如下:
5,饼图
饼图常用于表示个体占总体的占比情况。
plt.pie
函数用于绘制饼图。函数原型:
plt.pie(x, labels=None)
参数x
是一个数组,表示一组数据,labels
用于描述每个数据的含义。
比如下表是某个公司某年每个季度的收入:
我们可以用饼图分析出每个季度占全年收入的占比,代码如下:
# 表示每个季度 quarters = ['1', '2', '3', '4'] incomes = [56, 89, 75, 91] plt.pie(incomes, labels=quarters) plt.show()
画出的饼图如下:
(本节完。)
推荐阅读:
欢迎关注作者公众号,获取更多技术干货。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
MYSQL innodb_deadlock_detect 打开数据库性能低,与事务回滚
最近在重新整理MYSQL 8的MY.CNF 的配置,在和组员讨论的试试,我们的MYSQL DBA 提出一个问题, innodb_deadlock_detect和 innodb_rollback_on_timeout, 以及事务回滚的问题. 这里需要明确的几个问题 1 innodb_deadlock_detect 是检测死锁的一种方法,从mysql 5.7.13引入的, 在官方MYSQL 8.0 的文档中提到在高并发的系统中还是建议不使用 innodb_deadlock_detect. 大部分文字都在重复一个观点,高并发使用死锁的检测,会引起性能的问题 那么基本上每个文字都在描述打开这个开关会影响性能,到底影响那些性能了 ___________________________________________________________________________ 在源代码的文档里面针对这个参数有这样一个描述, 在打开这个参数后会使用 lock_get_mode_str 这个操作下面是调用这个操作的解释 以上的代码解释来源于 MYSQL8.023 这个版本. 时间和精力的关系不想在...
- 下一篇
看KubeEdge携手K8S,如何管理中国高速公路上的10万边缘节点
摘要:为保证高速公路上门架系统的落地项目的成功落地,选择K8s和KubeEdge来进行整体的应用和边缘节点管理。 一、项目背景 本项目是在高速公路ETC联网和推动取消省界收费站的大前提下,门架系统的落地,也就是要把门架部署在覆盖全国范围的高速公路上,收集车辆通行的牌示信息,以及相应的交易信息。 整体的情况是在边缘侧,即高速公路上会部署大量的门架和相应的控制器,相应的边缘终端,这些终端大概10万台,其上部署了相关的应用以收集相关信息。超过50万个应用部署到边缘节点,收集到信息后,通过收费专网向省中心以及路网中心上传对应的数据。 本次项目的工作挑战主要有两个方面: 将近10万台异构设备的管理,包括arm,x86等异构设备。 50余万个应用的生命周期管理 为保证项目的成功落地,我们对整体架构做了选型,最终选择了K8s和KubeEdge来进行整体的应用和边缘节点管理。 二、为什么选择Kubernetes 在项目里,虽然说是部署在边缘侧的应用,但它的复杂程度已经和云上是类似的了,在边缘侧部署的应用已经是由很多个微服务组成的。所以Kubernetes对于支撑这种微服务化的、云原生化的应用部署和大规...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS关闭SELinux安全模块
- CentOS7设置SWAP分区,小内存服务器的救世主
- Docker安装Oracle12C,快速搭建Oracle学习环境
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7