【图论】拓扑排序详解

前言

在正文开始前,我们先来了解一下有向无环图(Directed Acyclic Graph简称DAG)

如下图就是一个DAG图,DAG图是我们讨论拓扑排序的基础。

AOV网:数据在顶点 可以理解为面向对象 AOE网:数据在边上,可以理解为面向过程!

1. 什么是拓扑排序

拓扑排序(Topological Order),很多人听说过,但是不了解的一种算法。或许很多人只知道它是图论的一种排序,至于干什么的不清楚。又或许很多人可能还会认为它是一种啥排序。

而实质上它只是将DAG图的顶点排成一个线性序列,得到一个顶点的全序集合。其排序的顺序依据就是节点的指向关系。比如前言的DAG图:

  • ...
  • 节点5在节点4和节点3的后面
  • 节点9在节点6和节点7的后面
  • ...

那么最后得到的节点的线性序列结果,也一定要满足上面的指向顺序。

每一个节点都拥有入度(有多少点导向它,也就是开始它有多少前提)和出度(它导向多少点,也就是它是多少其他节点开始的前提)。例如节点5的入度为3和4,出度为7。

拓扑排序的结果不是唯一的,只要符合上面的条件,那么它就是拓扑序列,比如1 2 4 3 6 5 7 92 1 3 4 5 6 7 9,这两个结果都是可行的。

官方一点的定义:将有向图中的节点以线性方式进行排序。即对于任何连接自节点u到节点v的有向边uv,在最后的排序结果中,节点u总是在节点v的前面。

2. 现实案例

看了上面关于拓扑排序的概念如果还觉得十分抽象的话,那么不妨考虑一个非常非常经典的例子——选课。

假设我非常想学习一门《jsp入门》的课程,但是在修这么课程之前,我们必须要学习一些基础课程,比如《JAVA语言程序设计》,《HTML指南》等等。那么这个制定选修课程顺序的过程,实际上就是一个拓扑排序的过程,每门课程相当于有向图中的一个顶点,而连接顶点之间的有向边就是课程学习的先后关系。

只不过这个过程不是那么复杂,从而很自然的在我们的大脑中完成了。将这个过程以算法的形式描述出来的结果,就是拓扑排序。

可以看到,上图中的学习顺序,就是拓扑序列,其不止一个结果。

拓扑排序算法在工程学中十分重要。

节点成环的图,无法被拓扑排序,因为这在工程上本身没有意义,比如A——>B——>C——>A,那么这个工程永远无法被开始。

3. 算法实现

拓扑排序的最优时间复杂度是O(m+n),其中m和n是DAG图中节点数和边数。因为拓扑排序至少要对DAG图的节点和边进行一次完整的遍历。

拓扑排序的最优空间复杂度是O(m+n),其中m和n是DAG图中节点数和边数。我们一般使用邻接表来存储DAG图,因此空间复杂度是O(m+n)。

3.1 广度优先搜索法(BFS)

3.1.1 BFS实现拓扑排序

广度优先搜索法的思路很简单:

  1. 从DAG图中找到入度为0的节点A(也就是没有箭头指向它的节点),将其放入拓扑序列的结果集。
  2. 同时删除由节点A出发的所有边。
  3. 在剩下的DAG图中重复1-2两步。
  4. 如果最后可以把全部的节点都删除并加入到结果集,那表示DAG图可以被拓扑排序;否则,如果最后有节点被剩下,那说明该图是有环图,无法被拓扑排序。

如下图

3.1.2 BFS实现拓扑排序的优化

如果有时候,我们只需要知道某个DAG图是否可以拓扑排序,而不需要真正得到拓扑排序后的结果,那么可以不需要结果集列表,只需要统计被删除的节点的数量即可,如果该数量等于DAG图的节点数,那么DAG图可以被拓扑排序

3.2 深度优先搜索法(DFS)

3.2.1 DFS实现拓扑排序

深度优先搜索法是广度优先搜索法的逆向思路,它的步骤如下:

  1. 选取图中任意一个节点A,将其状态标记为“搜索中”
  2. 寻找节点A的邻接点(沿着箭头指向寻找相邻的节点)
    1. 如果A存在邻接点
      1. 如果A的邻接点中存在状态为“搜索中”的邻接点,那么表示DAG图有环路,不可拓扑排序。
      2. 否则,那么任意选择一个状态为“未搜索”的邻接点B,使用递归对B重复做1和2操作,注意此时B的邻接点判断不包含来路(也就是A节点)。等到A的所有邻接点都被搜索到,递归回溯回A节点的时候,那么A节点也会被标记为“已搜索”,并压入结果栈。
    2. 如果A不存在邻接点,那么将节点A的状态改为“已完成”,并且将其压入一个结果集的栈中。
  3. A节点及其相邻节点都搜索完毕后,如果还有未搜索的节点,那么任意选取一个节点当做出发点,继续重复1,2,3步骤。
  4. 直到所有的节点都被搜索并压入栈,那么此时结果栈中,从栈顶到栈底的顺序,就是拓扑排序的顺序。

3.2.2 DFS实现拓扑排序的优化

如果有时候,我们只需要知道某个DAG图是否可以拓扑排序,而不需要真正得到拓扑排序后的结果,那么可以不需要结果栈,只需要判断整个深度优先搜索过程,没有发生“搜索中”节点的相邻节点(不包含来路的节点)也是“搜索中”就行。

4 算法题解

4.1 课程表I

leetcode-207. 课程表I

4.2 课程表II

leetcode-210.课程表II

优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/lscherish/blog/4571161

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
Apache Tomcat7、8、9(Java Web服务器)

Apache Tomcat7、8、9(Java Web服务器)

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse(集成开发环境)

Eclipse(集成开发环境)

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

Java Development Kit(Java开发工具)

Java Development Kit(Java开发工具)

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。

Sublime Text 一个代码编辑器

Sublime Text 一个代码编辑器

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。