您现在的位置是:首页 > 文章详情

你真的了解Lambda表达式么?

日期:2019-12-19点击:377

lambda表达式实战

从例子引出lambda

传递Runnable创建Thread

  • java8之前
 Thread thread=new Thread(new Runnable() { @Override public void run() { // do something } }); 
  • java 8 之后
new Thread(()->{}); 

上边的例子比较简单,但是有两个疑问。什么是Lambda表达式?怎么使用lambda表达式?

什么是Lambda表达式?

从上述例子入手,首先我们知道Lambda一般代表的是一个匿名对象;其次我们点击“->”,IDE会帮助我们进入到符合Lambda规范的函数接口。我们来观察下这个符合规范的类的变化。

// 省略注释 package java.lang; public interface Runnable { public abstract void run(); } 
// 省略注释 package java.lang; @FunctionalInterface public interface Runnable { public abstract void run(); } 

我们发现java8后Runnable接口新增了一个注解@FunctionalInterface。下边我们一起来看下这个注解是什么。

FunctionalInterface

/** * An informative annotation type used to indicate that an interface * type declaration is intended to be a <i>functional interface</i> as * defined by the Java Language Specification. * * Conceptually, a functional interface has exactly one abstract * method. Since {@linkplain java.lang.reflect.Method#isDefault() * default methods} have an implementation, they are not abstract. If * an interface declares an abstract method overriding one of the * public methods of {@code java.lang.Object}, that also does * <em>not</em> count toward the interface's abstract method count * since any implementation of the interface will have an * implementation from {@code java.lang.Object} or elsewhere. * * <p>Note that instances of functional interfaces can be created with * lambda expressions, method references, or constructor references. * * <p>If a type is annotated with this annotation type, compilers are * required to generate an error message unless: * * <ul> * <li> The type is an interface type and not an annotation type, enum, or class. * <li> The annotated type satisfies the requirements of a functional interface. * </ul> * * <p>However, the compiler will treat any interface meeting the * definition of a functional interface as a functional interface * regardless of whether or not a {@code FunctionalInterface} * annotation is present on the interface declaration. * * @jls 4.3.2. The Class Object * @jls 9.8 Functional Interfaces * @jls 9.4.3 Interface Method Body * @since 1.8 */ @Documented @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) public @interface FunctionalInterface {} 
  • 上边文档的核心意思是:@FunctionInterface注解是为了表明这个类是一个函数式接口。
  • 函数式接口有这样的特点:只有一个抽象方法。java8提供了default方法,以及超类Object中的方法(toString,Equals),这些方法不计算抽象方法数量的统计中。
  • 使用上:函数式接口可以配合lambda表达式方法引用构造引用使用
  • 如果类上标记了这个注解,编译器会在编译期进行检查
  • 最后,即使我们没有标注这个注解,编译器也会将它看待成一个函数式接口

好了,从上边我们知道了lambda的特点,接下来我们来聊下怎么使用?

如何使用Lambda

首先,我们去官网查阅Java8新特性,找到Lambda表达式的说明。我们从这个文档的**“Syntax of Lambda Expressions”**部分入手,大概可以得到如下的结论。

Lambda的组成

Lambda主要由下边几部分组成;参数列表,连接符,主体。

  • 参数列表
    • 圆括号内部,参数以“,”分割开来。如(String a,Object b)。
    • 此外,参数的类型和括号,有些时候是可以省略
  • 箭头记号
    • 通过“->”这种特殊符号形式,连接前后。
  • 主体
    • 可以由单个表达式,或者语句块组成。
    • 单个表达式,如"System.out.println("xxx")"
    • 语句块
      • 示例1
       { System.out.println("xxx"); } 
      • 示例2
       { // do something return some result return 100; } 

Lambda的完整用法示例

无返回值的lambda的用例

目的,将具体业务实现交给调用者处理。

  • 定义一个无返回值,符合FunctionInterface规范的接口对象
interface Print<String>{ void printName(String string); } 
使用示例1

我这里的业务逻辑是根据输入参数,执行日志打印操作。实际业务场景下,可能对应的是发送邮件或者MQ这样的具体操作。

public class LambdaDemo { public static void main(String[] args) { PrintSomeThing(name->System.out.println(name),"Hello baigt"); } public static void PrintSomeThing(Print<String> str,String name) { str.printName(name); } } 
使用示例1 的延伸使用
  • 定义 一个使用类
class Doctor{ String name; String interest; public Doctor(String name, String interest) { this.name = name; this.interest = interest; } public void printName(Print<String> str) { str.printName(name); } } 
  • 具体使用
 Doctor doctor=new Doctor("baigt","java and javascript"); doctor.printName(name->System.out.println(name)); 
有返回值的lambda的用例

目的,将具体业务实现交给调用者处理,并将结果返回。

  • 定义一个有返回值,符合FunctionInterface规范的接口对象
interface GetSomething<String>{ String getThing(); } 
  • 定义一个使用者
class Doctor{ String name; String interest; public Doctor(String name, String interest) { this.name = name; this.interest = interest; } public String getInterest(GetSomething<String> get) { return get.getThing()+","+name; } } 
  • 使用示例

我这里的业务逻辑是根据输入参数(隐式interest),计算出一个结果返回出来,并对这个结果执行打印操作。

 Doctor doctor=new Doctor("baigt","java and javascript"); System.out.println(doctor.getInterest(() -> "Hi")); 

到此处,我们已经大概明白lambda表达式的基本用法。但是还会有两个疑问?

  • 上边例子我们自定义了几个函数式接口,那么还有其他常用的函数式接口?
  • 函数式接口不仅可以通过lambda表达式使用,还可以通过方法引用和构造引用来使用。那么这种引用又是怎么回事?

常用函数接口

我们选中@FunctionInterface注解类,通过Ide的Find Usages功能,会发现在java.util.function包下java8新增了很多类。这里挑几个基础的(其他的基本是功能上的增强或变种)来说。大致上有这么几种。

  • Consumer
  • Supplier
  • Predicate
  • Function

下边会做一个简单的说明和使用。可能不会细致的去讲每一个Api。旨在让大家快速熟悉使用java8 lambda。

Consumer

/** * Represents an operation that accepts a single input argument and returns no * result. Unlike most other functional interfaces, {@code Consumer} is expected * to operate via side-effects. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #accept(Object)}. * * @param <T> the type of the input to the operation * * @since 1.8 */ @FunctionalInterface public interface Consumer<T> { /** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t); /** * Returns a composed {@code Consumer} that performs, in sequence, this * operation followed by the {@code after} operation. If performing either * operation throws an exception, it is relayed to the caller of the * composed operation. If performing this operation throws an exception, * the {@code after} operation will not be performed. * * @param after the operation to perform after this operation * @return a composed {@code Consumer} that performs in sequence this * operation followed by the {@code after} operation * @throws NullPointerException if {@code after} is null */ default Consumer<T> andThen(Consumer<? super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; } } 

首先此接口只有一个抽象方法accept,该方法接收一个入参,不返回结果

定义使用类

 public static void doConsumer(Consumer consumer,String input) { consumer.accept(input); } 
  • 使用示例1

接收 “something input”输入,并执行打印操作

 Consumer consumer = input -> System.out.println(input); doConsumer(consumer,"something input"); 
  • 使用示例2

将两个Consumer操作串连起来,andThen的后执行。

Consumer consumer = input -> System.out.println(input); doConsumer(consumer.andThen(input2->{ System.out.println("input2"); }),"something input"); 

Supplier

/** * Represents a supplier of results. * * <p>There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #get()}. * * @param <T> the type of results supplied by this supplier * * @since 1.8 */ @FunctionalInterface public interface Supplier<T> { /** * Gets a result. * * @return a result */ T get(); } 

首先此接口只有一个抽象方法get,该方法不接收参数,返回一个T类型的结果

定义使用类

 public static <T> T doSupplier(Supplier<T> supplier) { return supplier.get(); } 
  • 使用示例1

不传入参数,生成一个指定类型为String或Integer的对象

 System.out.println(doSupplier(() -> "baigt")); System.out.println(doSupplier(() -> {return Integer.valueOf("10");})); 

Predicate

import java.util.Objects; /** * Represents a predicate (boolean-valued function) of one argument. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #test(Object)}. * * @param <T> the type of the input to the predicate * * @since 1.8 */ @FunctionalInterface public interface Predicate<T> { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t); /** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } } 

首先此接口只有一个抽象方法test,该方法接受一个T类型的对象,返回一个boolean类型的结果

定义使用类

 public static boolean doPredicate(Predicate<String> predicate,String string) { return predicate.test(string); } 
  • 使用示例1

根据条件,判断输入对象是否符合过滤规则。

System.out.println(doPredicate(input -> input.length() > 5, "12345")); System.out.println(doPredicate(((Predicate<String>) (input -> input.length() > 5)) .and(input -> input.equalsIgnoreCase("12345")), "12345")); 

Function

import java.util.Objects; /** * Represents a function that accepts one argument and produces a result. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #apply(Object)}. * * @param <T> the type of the input to the function * @param <R> the type of the result of the function * * @since 1.8 */ @FunctionalInterface public interface Function<T, R> { /** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t); /** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default <V> Function<V, R> compose(Function<? super V, ? extends T> before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); } /** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); } /** * Returns a function that always returns its input argument. * * @param <T> the type of the input and output objects to the function * @return a function that always returns its input argument */ static <T> Function<T, T> identity() { return t -> t; } } 

首先此接口只有一个抽象方法apply,该方法接收一个T类型对象,返回一个R类型的结果。

定义使用类

 public static Integer doFunction(Function<String,Integer> function,String input) { return function.apply(input); } 
  • 使用示例1

接收一个String类型的入参,返回Integer类型的结果。示例中没做具体异常判断。

System.out.println(doFunction(input -> input.length(), "baigt")); // 上述结果为 5 System.out.println(doFunction(((Function<String, Integer>) (input -> input.length())).compose(input -> String.valueOf(input.length() * 3)), "baigt")); // 上述结果为 2 System.out.println(doFunction(((Function<String, Integer>) (input -> { System.out.println("notcompose:"+input); return Integer.valueOf(input)+1; })).compose(input -> { System.out.println("compose:"+input); return String.valueOf(Integer.valueOf(input)*3); }), "22")); // 上述结果为 67 

compose是先执行的部分,上述例子中,是根据输入参数进行进一步的加工,再作为输入参数传递给具体调用者。

引用

前边提到了方法引用和构造引用两种,其实构造引用是一种特殊方法引用。具体参照官方文档说明中“Kinds of Method References”部分。

种类 用例
类名::静态方法 String::valueOf
实例对象::实例方法 doctor1::getInterest
类名::实例方法 String::toUpperCase
类名::new (构造引用) String::new

静态引用

  • 使用类
 public static String doStaticReference(Function<Integer,String> function, Integer input) { return function.apply(input); } 
  • 示例
doStaticReference(String::valueOf,123456); 

实例对象引用实例方法

  • 使用类
class Doctor{ String name; String interest; public Doctor(String name, String interest) { this.name = name; this.interest = interest; } public String getStringInstance(){ return new String(name); } } 
  • 示例
Doctor doctor1=new Doctor("baigt007","java"); Supplier<String> instance = doctor1::getInterest; 

类引用实例方法

  • 使用类
 public static String doMethodReference(Function<String,String> function, String input) { return function.apply(input); } 
  • 示例
doMethodReference(String::toUpperCase,"baigt");O 

构造引用

  • 示例
Supplier<String> stringInstance = String::new; 

后续(二探Lambda)

又进一步的分析了下lambda的底层实现,感兴趣可以看下 https://my.oschina.net/lt0314/blog/3146028

结语

上述是个人心得,不对之处,欢迎指正。

作者:baigt 交流群:244930845

原文链接:https://my.oschina.net/lt0314/blog/3144851
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章