【JVM】探究Java常量本质及三种常量池
可以从他人的博文,还有一些书籍中了解到 常量是放在常量池
中,细节的内容无从得知,相信每个人都会觉得面前的东西是一个几乎完全的黑盒,总是觉得不舒服,翻阅《深入理解Java虚拟机》,会发现这本书中对常量的介绍更多地偏重于字节码文件的结构,还有在自动内存管理机制中也介绍了运行时常量池。下面换种思路来看一下
Java中的常量池分为三种形态:静态常量池,字符串常量池以及运行时常量池。
? 静态常量池
所谓静态常量池
,即*.class文件中的常量池,class文件中的常量池不仅仅包含字符串(数字)字面量,还包含类、方法的信息,占用class文件绝大部分空间。
这种常量池主要用于存放两大类常量:字面量(Literal)和符号引用量(Symbolic References),字面量相当于Java语言层面常量的概念,如文本字符串,声明为final的常量值等,符号引用则属于编译原理方面的概念,包括了如下三种类型的常量:
- 类和接口的全限定名
- 字段名称和描述符
- 方法名称和描述符
而运行时常量池,则是jvm虚拟机在完成类装载操作后,将class文件中的常量池载入到内存中,并保存在方法区中,我们常说的常量池,就是指方法区中的运行时常量池。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是并非预置入class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用比较多的就是String类的intern()方法。
String的intern()方法会查找在常量池中是否存在一份equal相等的字符串,如果有则返回该字符串的引用,如果没有则添加自己的字符串进入常量池。
那这样来看,通过静态常量池,即*.class文件中的常量池 更能够探究常量的含义了
下面看一段代码
public class Main { public static void main(String[] args) { System.out.println(Father.str); } } class Father{ public static String str = "Hello,world"; static { System.out.println("Father static block"); } }
输出结果为
再看另一个:
package com.company; public class Main { public static void main(String[] args) { System.out.println(Father.str); } } class Father{ public static final String str = "Hello,world"; static { System.out.println("Father static block"); } }
结果:
只有一个
是不是发现很吃惊啊
我们对第二个演示的代码块进行反编译一下
D:\CodePractise\untitled\out\production\untitled\com\company>javap -c Main.class Compiled from "Main.java" public class com.company.Main { public com.company.Main(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return public static void main(java.lang.String[]); Code: 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #4 // String Hello,world 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: return }
这里有一个Main()是构造方法 下面的是main方法
0: getstatic # 2 对应的是System.out
3: ldc #4 对应的值 直接是 Hello,world 了 确定的值 没有从Father类中取出
ldc表示将int,float或是String类型的常量值从常量池中推送至栈顶
竟然没有!!! 即使删除Father.class文件 这段代码照样可以运行 它和Father类 没有半毛钱的关系了
实际上,在编译阶段 常量就会被存入到调用这个常量的方法所在的类的常量池当中
从这个例子中 可以看出 这里的str 是一个常量 调用这个常量的方法是main方法 main方法所在的类是Main ,也就是说编译之后str被放在了该类的常量池中
本质上,调用类并没有直接引用到定义常量的类,因此并不会触发定义常量的类的初始化
类的初始化 涉及到类的加载机制 这里暂时写不说 这个留到之后必须要好好说说
? 字符串常量池(string pool也有叫做string literal pool)
全局字符串池里的内容是在类加载完成,经过验证,准备阶段之后在堆中生成字符串对象实例,然后将该字符串对象实例的引用值存到string pool中(记住:string pool中存的是引用值而不是具体的实例对象,具体的实例对象是在堆中开辟的一块空间存放的。)。
字符串常量池的位置的说法不太准确
在JDK6.0及之前版本,字符串常量池是放在Perm Gen区(也就是方法区)中;
在JDK7.0版本,字符串常量池被移到了堆中了。
在HotSpot VM里实现的string pool功能的是一个StringTable类,它是一个哈希表,里面存的是驻留字符串(也就是我们常说的用双引号括起来的)的引用(而不是驻留字符串实例本身),也就是说在堆中的某些字符串实例被这个StringTable引用之后就等同被赋予了”驻留字符串”的身份。这个StringTable在每个HotSpot VM的实例只有一份,被所有的类共享。
? 回到运行常量池(runtime constant pool)
jvm在执行某个类的时候,必须经过加载、连接、初始化,而连接又包括验证、准备、解析三个阶段。
而当类加载到内存中后,jvm就会将静态常量池中的内容存放到运行时常量池中,由此可知,运行时常量池也是每个类都有一个。
静态常量池中存的是字面量和符号引用,也就是说它们存的并不是对象的实例,而是对象的符号引用值。而经过解析(resolve)之后,也就是把符号引用替换为直接引用,解析的过程会去查询字符串常量池,也就是我们上面所说的StringTable,以保证运行时常量池所引用的字符串与字符串常量池中所引用的是一致的。
我们看一个例子
import java.util.UUID; public class Test { public static void main(String[] args) { System.out.println(TestValue.str); } } class TestValue{ public static final String str = UUID.randomUUID().toString(); static { System.out.println("TestValue static code"); } }
结果:
从声明本身str都是常量,关键的是这个常量的值能否在编译时期确定下来,显然这里的例子在编译期的时候显然是确定不下来的。需要在运行期才能能够确定下来,这要求目标类要进行初始化
当常量的值并非编译期间可以确定的,那么其值不会被放到调用类的常量池中
这时在程序运行时,会导致主动使用这个常量所在的类,显然会导致这个类被初始化。
(这个涉及到类的加载机制,后面会写这里做个标记)
反编译探究一下:
Compiled from "Test.java" class com.leetcodePractise.tstudy.TestValue { public static final java.lang.String str; com.leetcodePractise.tstudy.TestValue(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return static {}; Code: 0: invokestatic #2 // Method java/util/UUID.randomUUID:()Ljava/util/UUID; 3: invokevirtual #3 // Method java/util/UUID.toString:()Ljava/lang/String; 6: putstatic #4 // Field str:Ljava/lang/String; 9: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 12: ldc #6 // String TestValue static code 14: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 17: return }
很明显TestValue类会初始化出来
常量介绍完之后 这里记录一下反编译及助记符的笔记
package com.company; public class Main { public static void main(String[] args) { System.out.println(Father.str); System.out.println(Father.s); } } class Father{ public static final String str = "Hello,world"; public static final short s = 6; static { System.out.println("Father static block"); } }
public class com.company.Main { public com.company.Main(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return public static void main(java.lang.String[]); Code: 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #4 // String Hello,world 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 11: bipush 6 13: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 16: return }
bipush 表示将单字节(-128-127)的常量值推送至栈顶
再加入
package com.company; public class Main { public static void main(String[] args) { System.out.println(Father.str); System.out.println(Father.s); System.out.println(Father.t); } } class Father{ public static final String str = "Hello,world"; public static final short s = 6; public static final int t = 128; static { System.out.println("Father static block"); } }
进行反编译
public class com.company.Main { public com.company.Main(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return public static void main(java.lang.String[]); Code: 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #4 // String Hello,world 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 11: bipush 6 13: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 16: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 19: sipush 128 22: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 25: return }
sipush表示将一个短整型常量值(-32768~32767)推送至栈顶
再进行更改
package com.company; public class Main { public static void main(String[] args) { System.out.println(Father.str); System.out.println(Father.t); } } class Father{ public static final String str = "Hello,world"; public static final int t = 1; static { System.out.println("Father static block"); } }
public class com.company.Main { public com.company.Main(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return public static void main(java.lang.String[]); Code: 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #4 // String Hello,world 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 11: bipush 6 13: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 16: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 19: sipush 128 22: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 25: return } D:\CodePractise\untitled\out\production\untitled\com\company>javap -c Main.class Compiled from "Main.java" public class com.company.Main { public com.company.Main(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return public static void main(java.lang.String[]); Code: 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #4 // String Hello,world 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 11: iconst_1 12: invokevirtual #6 // Method java/io/PrintStream.println:(I)V 15: return }
这里变成了 iconst_1
iconst 1表示将int类型1推送至栈顶(iconst_m1-iconst_5)
当大于5的时候 就变为了bipush
m1对应的是-1

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
【Java核心技术卷】深入理解Java的内部类
通过图示进行分析:该图展示了Java内部类的编译解释过程. 你会看到整个过程很繁琐. 因为历史原因, Java语言规范 和字节码语言规范有不重叠的部分, 最初的时候,它们是重叠的. 但是后来随着Java的发展,有新的东西需要加入,比如说泛型,但是字节码语言规范不能够轻易变更,因为这个涉及到兼容问题. 能够动的只有编译器, 通过编译器把Java源程序编译成满足字节码语言规范的字节码文件进行执行.今天的内部类 和泛型一样,也是后来加入的. 关于内部类的实现,其实编译器在后面做了很多很多的东西, 虽然内部类有被Lambda表达式取代的趋势(Lambda表达式有自己的解释器),但是还是需要五深入理解的. 直接介绍凝练点:1.Java源程序要遵循Java语言规范,Java编译器按照Java语言规范来编译Java源程序。2.字节码程序要遵循字节码语言规范,JVM的Java解释器/JIT编译器按照字节码语言规范来解释/编译运行字节码程序。3.Java语言与字节码语言是两种不同的语言。它们的语言规范有相同处,也存在不同处例如: 相同处:均有访问控制符。一个类内部的私有成员只能被该类的其它成员所访问,其...
- 下一篇
【JVM】探究数组的本质
之前写过一篇深入理解数组的博文【Java核心技术卷】深入理解Java数组, 这篇文章主要从理论的角度, 探讨了Java的数组。 这篇文章主要从实战的角度去探究数组的本质。 在正文开始之前,我们有必要先关注一下类的加载机制: 在Java代码中,类型的加载、连接与初始化过程都是在程序运行期间完成的 这里的类型指的是我们定义的class interface,枚举等等,这里不涉及到对象的概念,是一种runtime的阶段。这种加载机制提供了更大的灵活性,增加了更多的可能性。 简单地说类型的加载 最常见的就是把字节码文件从磁盘中加载到内存,连接就是将类与类之间的关系确定好,并且对字节码的一些处理,校验等 也就是在这一阶段完成了初始化 就是对类型中的静态字段赋值等等 具体流程如下: 类的加载、连接与初始化 加载:查找并加载类(class文件)的二进制数据 连接·-验证:确保被加载的类的正确性(class文件的格式等) ·-准备:为类的静态变量分配内存,并将其初始化为默认值(准备阶段 还没有类的概念)·-解析:把类中的符号引用转换为直接引用 初始化:为类的静态变量赋予正确的初始值 用图示表述为 Jav...
相关文章
文章评论
共有0条评论来说两句吧...