首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/721943

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

数据中台的存储系统和计算平台枚举

作者:向师富 转自:阿里巴巴数据中台官网 https://dp.alibaba.com采集&传输层 SqoopHadoop、关系型数据库之间传输数据的工具。传输时,会启动多个MR作业并发的传输数据 DataX阿里巴巴开源的数据同步工具,用来在各种异构数据源之间同步数据。比如 RDBMS<->Hadoop/MaxCompute、RDBMS<->hbase/ftp等等。部署、运维非常简单,将DataX的jar包copy到linux系统中即可运行 Flume分布式的高可用的数据收集、聚集的工具。通常用于从其他系统搜集数据,如web服务器产生的日志,结合Kafka的消息队列功能,实现实时日志处理、离线日志投递。 典型的使用方案是: 离线计算:应用系统日志 -> flume -> kafka ->

PyTorch快餐教程2019 (2) - Multi-Head Attention

PyTorch快餐教程2019 (2) - Multi-Head Attention 上一节我们为了让一个完整的语言模型跑起来,可能给大家带来的学习负担过重了。没关系,我们这一节开始来还上节没讲清楚的债。 还记得我们上节提到的两个Attention吗? 上节我们给大家一个印象,现在我们正式开始介绍其原理。 Scaled Dot-Product Attention 首先说Scaled Dot-Product Attention,其计算公式为:$Attention(Q,K,V)=softmax(frac{QK^T}{sqrt{d_k}})V$ Q乘以K的转置,再除以$d_k$的平方根进行缩放,经过一个可选的Mask,经过softmax之后,再与V相乘。用代码实现如下: def attention(query, key, value, mask=No

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册