Android 网络请求OkHttp3流程分析
基本概念
首先从使用出发,其次再结合源码来分析OkHttp3的内部实现的,建议大家下载 OkHttp 源码跟着本文,过一遍源码。首先来看一下OkHttp3的请求代码。
OkHttpClient client = new OkHttpClient(); String run(String url) throws IOException { Request request = new Request.Builder() .url(url) .build(); Response response = client.newCall(request).execute(); return response.body().string(); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
OkHttp3的执行流程
- 创建OkHttpClient对象。OkHttpClient为网络请求执行的一个中心,它会管理连接池,缓存,SocketFactory,代理,各种超时时间,DNS,请求执行结果的分发等许多内容。
- 创建Request对象。Request用于描述一个HTTP请求,比如请求的方法是GET还是POST,请求的URL,请求的header,请求的body,请求的缓存策略等。
- 创建Call对象。Call是一次HTTP请求的Task,它会执行网络请求以获得响应。OkHttp中的网络请求执行Call既可以同步进行,也可以异步进行。调用call.execute()将直接执行网络请求,阻塞直到获得响应。而调用call.enqueue()传入回调,则会将Call放入一个异步执行队列,由ExecutorService在后台执行。
- 执行网络请求并获取响应。
上面的代码中涉及到几个常用的类:Request、Response和Call。下面就这几个类做详细的介绍。
Request
每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头,请求还可能包含一个特定内容类型的数据类的主体部分。
Response
响应是对请求的回复,包含状态码、HTTP头和主体部分。
Call
OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步。
那么首先来看一下OkHttpClient的源码实现。
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory { public OkHttpClient() { this(new Builder()); } OkHttpClient(Builder builder) { this.dispatcher = builder.dispatcher; this.proxy = builder.proxy; this.protocols = builder.protocols; this.connectionSpecs = builder.connectionSpecs; this.interceptors = Util.immutableList(builder.interceptors); this.networkInterceptors = Util.immutableList(builder.networkInterceptors); this.eventListenerFactory = builder.eventListenerFactory; this.proxySelector = builder.proxySelector; this.cookieJar = builder.cookieJar; this.cache = builder.cache; this.internalCache = builder.internalCache; this.socketFactory = builder.socketFactory; boolean isTLS = false; this.hostnameVerifier = builder.hostnameVerifier; this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner( certificateChainCleaner); this.proxyAuthenticator = builder.proxyAuthenticator; this.authenticator = builder.authenticator; this.connectionPool = builder.connectionPool; this.dns = builder.dns; this.followSslRedirects = builder.followSslRedirects; this.followRedirects = builder.followRedirects; this.retryOnConnectionFailure = builder.retryOnConnectionFailure; this.connectTimeout = builder.connectTimeout; this.readTimeout = builder.readTimeout; this.writeTimeout = builder.writeTimeout; this.pingInterval = builder.pingInterval; } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
然后使用okHttpClient发起请求。例如:
okHttpClient.newCall(request).enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { } @Override public void onResponse(Call call, Response response) throws IOException { } });
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
那接下来我们在看下Request。例如:
Request request = new Request.Builder().url("url").build();
- 1
该段代码主要实现初始化构建者模式和请求对象,并且用URL替换Web套接字URL。其源码如下:
public final class Request { public Builder() { this.method = "GET"; this.headers = new Headers.Builder(); } public Builder url(String url) { ...... // Silently replace web socket URLs with HTTP URLs. if (url.regionMatches(true, 0, "ws:", 0, 3)) { url = "http:" + url.substring(3); } else if (url.regionMatches(true, 0, "wss:", 0, 4)) { url = "https:" + url.substring(4); } HttpUrl parsed = HttpUrl.parse(url); ...... return url(parsed); } public Request build() { ...... return new Request(this); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
我们来看一下okHttpClient的异步请求方式。
okHttpClient.newCall(request).enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { } @Override public void onResponse(Call call, Response response) throws IOException { } });
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
而newCall又调用了RealCall函数,来看源码:
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory { @Override public Call newCall(Request request) { return new RealCall(this, request, false /* for web socket */); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。继续看代码:
final class RealCall implements Call { @Override public void enqueue(Callback responseCallback) { synchronized (this) { if (executed) throw new IllegalStateException("Already Executed"); executed = true; } captureCallStackTrace(); client.dispatcher().enqueue(new RealCall.AsyncCall(responseCallback)); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
由上面的代码可以得出:
- 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone方法进行克隆。
- 利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的OkHttpClient.Builder 的成员之一。
- AsyncCall是RealCall的一个内部类并且继承NamedRunnable。
final class AsyncCall extends NamedRunnable { private final Callback responseCallback; AsyncCall(Callback responseCallback) { super("OkHttp %s", new Object[]{RealCall.this.redactedUrl()}); this.responseCallback = responseCallback; } ... }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
而NamedRunnable又实现了Runnable接口,来看代码:
public abstract class NamedRunnable implements Runnable { ...... @Override public final void run() { ...... try { execute(); } ...... } protected abstract void execute(); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:
final class AsyncCall extends NamedRunnable { private final Callback responseCallback; AsyncCall(Callback responseCallback) { super("OkHttp %s", redactedUrl()); this.responseCallback = responseCallback; } ...... final class RealCall implements Call { @Override protected void execute() { boolean signalledCallback = false; try { Response response = getResponseWithInterceptorChain(); if (retryAndFollowUpInterceptor.isCanceled()) { signalledCallback = true; responseCallback.onFailure(RealCall.this, new IOException("Canceled")); } else { signalledCallback = true; responseCallback.onResponse(RealCall.this, response); } } catch (IOException e) { ...... responseCallback.onFailure(RealCall.this, e); } finally { client.dispatcher().finished(this); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法,并调用Dispatcher的finished方法。
Dispatcher线程池介绍
那还看一下Dispatcher类的相关代码:
public final class Dispatcher { /** 最大并发请求数为64 */ private int maxRequests = 64; /** 每个主机最大请求数为5 */ private int maxRequestsPerHost = 5; /** 线程池 */ private ExecutorService executorService; /** 准备执行的请求 */ private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); /** 正在执行的异步请求,包含已经取消但未执行完的请求 */ private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); /** 正在执行的同步请求,包含已经取消单未执行完的请求 */ private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>(); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
在OkHttp,使用如下构造了单例线程池,相关源码如下:
public synchronized ExecutorService executorService() { if (executorService == null) { executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS, new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false)); } return executorService; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
executorService函数会构造一个线程池ExecutorService:
executorService = new ThreadPoolExecutor( //corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁 0, //maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理 Integer.MAX_VALUE, //keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间 60, //单位秒 TimeUnit.SECONDS, //工作队列,先进先出 new SynchronousQueue<Runnable>(), //单个线程的工厂 Util.threadFactory("OkHttp Dispatcher", false));
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做”OkHttp Dispatcher”的线程工厂。也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。
synchronized void enqueue(AsyncCall call) { if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) { runningAsyncCalls.add(call); executorService().execute(call); } else { readyAsyncCalls.add(call); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。由此,可以得出Dispatcher的以下作用。
- 调度线程池Disptcher实现了高并发,低阻塞的实现;
- 采用Deque作为缓存,先进先出的顺序执行;
- 任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能。
try { Response response = getResponseWithInterceptorChain(); if (retryAndFollowUpInterceptor.isCanceled()) { signalledCallback = true; responseCallback.onFailure(RealCall.this, new IOException("Canceled")); } else { signalledCallback = true; responseCallback.onResponse(RealCall.this, response); } } finally { client.dispatcher().finished(this); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
其流程可以用下图表示:
getResponseWithInterceptorChain方法
相关的方法源码如下:
Response getResponseWithInterceptorChain() throws IOException { // Build a full stack of interceptors. List<Interceptor> interceptors = new ArrayList<>(); interceptors.addAll(client.interceptors()); interceptors.add(retryAndFollowUpInterceptor); interceptors.add(new BridgeInterceptor(client.cookieJar())); interceptors.add(new CacheInterceptor(client.internalCache())); interceptors.add(new ConnectInterceptor(client)); if (!forWebSocket) { interceptors.addAll(client.networkInterceptors()); } interceptors.add(new CallServerInterceptor(forWebSocket)); Interceptor.Chain chain = new RealInterceptorChain( interceptors, null, null, null, 0, originalRequest); return chain.proceed(originalRequest); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:
Interceptor.Chain chain = new RealInterceptorChain( interceptors, null, null, null, 0, originalRequest); return chain.proceed(originalRequest);
- 1
- 2
- 3
从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么看一下RealInterceptorChain类。
public final class RealInterceptorChain implements Interceptor.Chain { public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation, HttpCodec httpCodec, RealConnection connection, int index, Request request) { this.interceptors = interceptors; this.connection = connection; this.streamAllocation = streamAllocation; this.httpCodec = httpCodec; this.index = index; this.request = request; } ...... @Override public Response proceed(Request request) throws IOException { return proceed(request, streamAllocation, httpCodec, connection); } public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec, RealConnection connection) throws IOException { if (index >= interceptors.size()) throw new AssertionError(); calls++; ...... // Call the next interceptor in the chain. RealInterceptorChain next = new RealInterceptorChain( interceptors, streamAllocation, httpCodec, connection, index + 1, request); Interceptor interceptor = interceptors.get(index); Response response = interceptor.intercept(next); ...... return response; } protected abstract void execute(); }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。Interceptor 代码如下:
public interface Interceptor { Response intercept(Chain chain) throws IOException; interface Chain { Request request(); Response proceed(Request request) throws IOException; Connection connection(); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:
public final class BridgeInterceptor implements Interceptor { ...... @Override public Response intercept(Chain chain) throws IOException { Request userRequest = chain.request(); Request.Builder requestBuilder = userRequest.newBuilder(); RequestBody body = userRequest.body(); //如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部 if (body != null) { MediaType contentType = body.contentType(); if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()); } long contentLength = body.contentLength(); if (contentLength != -1) { requestBuilder.header("Content-Length", Long.toString(contentLength)); requestBuilder.removeHeader("Transfer-Encoding"); } else { requestBuilder.header("Transfer-Encoding", "chunked"); requestBuilder.removeHeader("Content-Length"); } } if (userRequest.header("Host") == null) { requestBuilder.header("Host", hostHeader(userRequest.url(), false)); } if (userRequest.header("Connection") == null) { requestBuilder.header("Connection", "Keep-Alive"); } // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing // the transfer stream. boolean transparentGzip = false; if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) { transparentGzip = true; requestBuilder.header("Accept-Encoding", "gzip"); } List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url()); if (!cookies.isEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)); } if (userRequest.header("User-Agent") == null) { requestBuilder.header("User-Agent", Version.userAgent()); } Response networkResponse = chain.proceed(requestBuilder.build()); HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); Response.Builder responseBuilder = networkResponse.newBuilder() .request(userRequest); if (transparentGzip && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding")) && HttpHeaders.hasBody(networkResponse)) { GzipSource responseBody = new GzipSource(networkResponse.body().source()); Headers strippedHeaders = networkResponse.headers().newBuilder() .removeAll("Content-Encoding") .removeAll("Content-Length") .build(); responseBuilder.headers(strippedHeaders); responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody))); } return responseBuilder.build(); } /** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */ private String cookieHeader(List<Cookie> cookies) { StringBuilder cookieHeader = new StringBuilder(); for (int i = 0, size = cookies.size(); i < size; i++) { if (i > 0) { cookieHeader.append("; "); } Cookie cookie = cookies.get(i); cookieHeader.append(cookie.name()).append('=').append(cookie.value()); } return cookieHeader.toString(); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。再看下一个拦截器ConnectInterceptor的处理:
public final class ConnectInterceptor implements Interceptor { ...... @Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); StreamAllocation streamAllocation = realChain.streamAllocation(); // We need the network to satisfy this request. Possibly for validating a conditional GET. boolean doExtensiveHealthChecks = !request.method().equals("GET"); HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks); RealConnection connection = streamAllocation.connection(); return realChain.proceed(request, streamAllocation, httpCodec, connection); } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。
CallServerInterceptor
CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; HttpCodec httpCodec = realChain.httpStream(); StreamAllocation streamAllocation = realChain.streamAllocation(); RealConnection connection = (RealConnection) realChain.connection(); Request request = realChain.request(); long sentRequestMillis = System.currentTimeMillis(); httpCodec.writeRequestHeaders(request); Response.Builder responseBuilder = null; if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) { // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100 // Continue" response before transmitting the request body. If we don't get that, return what // we did get (such as a 4xx response) without ever transmitting the request body. if ("100-continue".equalsIgnoreCase(request.header("Expect"))) { httpCodec.flushRequest(); responseBuilder = httpCodec.readResponseHeaders(true); } if (responseBuilder == null) { // Write the request body if the "Expect: 100-continue" expectation was met. Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength()); BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut); request.body().writeTo(bufferedRequestBody); bufferedRequestBody.close(); } else if (!connection.isMultiplexed()) { // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from // being reused. Otherwise we're still obligated to transmit the request body to leave the // connection in a consistent state. streamAllocation.noNewStreams(); } } httpCodec.finishRequest(); if (responseBuilder == null) { responseBuilder = httpCodec.readResponseHeaders(false); } Response response = responseBuilder .request(request) .handshake(streamAllocation.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); int code = response.code(); if (forWebSocket && code == 101) { // Connection is upgrading, but we need to ensure interceptors see a non-null response body. response = response.newBuilder() .body(Util.EMPTY_RESPONSE) .build(); } else { response = response.newBuilder() .body(httpCodec.openResponseBody(response)) .build(); } if ("close".equalsIgnoreCase(response.request().header("Connection")) || "close".equalsIgnoreCase(response.header("Connection"))) { streamAllocation.noNewStreams(); } if ((code == 204 || code == 205) && response.body().contentLength() > 0) { throw new ProtocolException( "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength()); } return response; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。
总结
最后我们用一张图来总结ohhttp的整个请求流程。
OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(,但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念,而且OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Android常用工具类的封装
Android常用工具类的封装 文章思路参考自刘桂林前辈巧用第三方快速开发AndroidApp,由衷感谢。 https://coding.imooc.com/class/81.html 这是自己在学习过程中用到的工具类,希望能帮到你,相关代码已经上传到Github的Util文件夹内 https://github.com/13531982270/BlogDemo Log封装类 为什么要封装Log,这是因为我们每次输入Log的时候,每次都要输入TAG,例如这样: Log.d("tonjie","要输出的内容"); 即便我们可以在一个类中声明常量TAG,private static final String TAG = "tonjies";也仍然需要输入常量,而且很多时候我都是调试完程序,在程序没有问题的情况下就把Log删除的,所以练习时的简便就是我需要的,那么废话不多说,直接看代码吧! public class L { //TAG public static String TAG = "tonjies"; //5个等级 DIWE public static void d(String te...
- 下一篇
Android项目实战(四十五):Usb转串口通讯(CH34xUARTDriver)
需求为:手机usb接口插入一个硬件,从硬件上获取数据 例如:手机usb插入硬件A,A通过蓝牙通讯获取设备a、b的数据,作为中转站(可以做些数据处理)将数据(设备a、b产生的)传给手机程序。 设备A也可以自身就是一个传感器,自身就会生成数据传送给手机程序。 适用于:程序需要某些传感器的数据,但是手机自身不支持(或无法获取)。 手机自身蓝牙连接有问题(厂商蓝牙底层的修改导致的不稳定, 不能连接多个) 缺点:部分手机不支持OTG,即无法获取usb接口连接硬件的数据 ---------------------------------------------------------分割线-------------------------------------------------------------- 本文章以CH34X芯片为例。 官方:http://www.wch.cn/download/CH341SER_ANDROID_ZIP.html 官方demo是eclipse项目,需要先自行创建一个android studio的demo 一、创建一个android stu...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS关闭SELinux安全模块
- CentOS7,8上快速安装Gitea,搭建Git服务器
- Hadoop3单机部署,实现最简伪集群
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- Docker安装Oracle12C,快速搭建Oracle学习环境