深度学习已经彻底改变了我们的生活
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》
【51CTO.com快译】
如果把深度学习比作一个气泡,我们需要了解其弧度及折射原理,从而真正加以驾驭。
时至今日,机器学习已经开始观察我们的行为、倾向、相互作用与交流响应。深度学习正是机器学习的下一步发展方向。虽然其在传统上常被用于帮助机器学习方案掌握文本数据,但如今深度学习已经开始尝试从视频、音频、音乐、图像以及传感器数据等更为复杂的内容形式中提取信息。
无论是计算机视觉识别、人类识别、语音识别还是自然语言处理,这一切都已经成为“建设性”技术应用范例。之所以具备突破性,是因为其并非简单调用预先存储的历史数据,而亦可根据学习经验修改、恢复以及注释其发现的结论甚至是物理对象。
事实上,深度学习分析 目的在于识别真实数据中的真实模式。如果这种建设性能力可应用于总结经验、设计方案以及记录历史,甚至能够以惊人的逼真性反馈于我们的身体,那么现实与幻想之间的界线将变得非常模糊。或许有一天,我们可能将预算法作为经验的基石,而彻底失去人类的自我意识?
这并非形而上性质的冥想。事实上,深度学习已经迈进至以下阶段:
·可以通过在原始视觉元素之上根据消失、模糊或者误导性图像生成并叠加新的元素,从而实现图像的自动纠正。
·可以将任何粗糙的涂鸦转化为令人印象深刻的美图,这已经接近人类艺术家对现实世界的描绘。
·可以将手绘人脸蓝图通过算法转换为逼真的图像。
·可以将任意低分辨率原始图像转化为自然的高清晰度版本。
·可以指示计算机绘制任何图像,同时表现特定人类艺术家的创作风格。
·基本可以直接调用任何并不存在于源代码当中的图案、人物及其它细节图像。
·可以自动为图像及其它内容生成标题与注释,这一点接近于真实读者或者相关主题专家。
·可以渲染任何计算机生成的语音,且其听起来与人类朗读一样自然。
·可以领先计算机生成表达真实感受的音乐,其效果类似于人类音乐家的创作成果。
·可以制作各类功能性出众的物理对象,包括假肢、有机分子、3D打印、CRISPR以及其它新型技术。
很明显,这种构建能力亦可体现在重构方面,这意味着深度学习已经具备了制造与误导能力。抛开炒作不谈,深度学习的重构潜力已经在认知性问题当中得到证明,其甚至已经成为云决策支持当中的潜在算法基础。然而,如果这些重构算法与真实环境区别很大,那么实际应用很可能带来巨大风险——特别是考虑到深度学习在自动驾驶汽车与假肢设计等领域的应用。
虽然无法阻止深度学习不断融入我们的生活,但我们完全可以进一步提升其透明性,即了解这些算法如何作出自己的判断。我们应当检测深度学习应用中具体算法的识别流程(例如由源信息到端到端图形变换、统计模型乃至元数据等),进而掌握其如何以特定方式在特定情况下采取特定行动。
同样重要的是,我们应当时刻将算法结论与现实情况加以比对,从而标记二者间的冲突并考量其相互作用。总而言之,如果把深度学习比作一个气泡,我们需要了解其弧度及折射原理,从而真正加以驾驭。
原文标题:Deep learning is already altering your reality
原文作者: James Kobielus
【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】
点赞 0

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
机器学习领域中的六大误区
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 【51CTO.com快译】 误区 机器学习已经不再仅限于科幻电影——从Siri与Alexa语音识别到Facebook的照片自动标记,再到Amazon与Spotify商品推荐,机器学习技术开始越来越多地融入日常生活。目前,众多企业渴望着利用机器学习算法以改进自身网络效率。 与任何技术一样,机器学习如果未经正确实施,同样有可能对网络造成严重危害。因此在采取这项技术之前,企业应当了解机器学习可能引发的问题,同时尽量加以避免。在今天的文章中,瞻博网络公司安全智能软件得Roman Sinayev列举了以下六种机器学习领域的认识误区。 忽视意料外的变量行为 有些事物计算机认为很重要,而人类却会瞬间将其判断为毫无价值。正因为如此,部署机器学习算法之前,必须尽可能考虑更多相关变量与潜在结果。 以模型训练为例,我们假定需要帮助算法区图片中的两类载具——卡车与轿车。如果所有卡车图片皆拍摄于夜间,而全部轿车图片皆拍摄于白天,那么这套模型就会认为夜间出现的一定是卡车。 处理关键性变量及结果将有助于降低解决方案出现不必要及意外行为的可能性。...
- 下一篇
首枚光子神经形态芯片问世!运算速度快3个数量级
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 据《麻省理工技术评论》杂志网站近日报道,美国普林斯顿大学的科研团队日前研制出全球首枚光子神经形态芯片,并证明其能以超快速度计算。该芯片有望开启一个全新的光子计算产业。 普林斯顿大学亚力山大·泰特团队的新成果是利用光子解决了神经网络电路速度受限这一难题。神经网络电路已在计算领域掀起风暴。科学家希望制造出更强大的神经网络电路,其关键在于制造出能像神经元那样工作的电路,或称神经形态芯片,但此类电路的主要问题是要提高速度。光子计算是计算科学领域的“明日之星”。与电子相比,光子拥有更多带宽,能快速处理更多数据。但光子数据处理系统制造成本较高,因此一直未被广泛采用。 团队研制出的光子神经网络的核心是一种光学设备——其中的每个节点拥有神经元一样的响应特征。这些节点采用微型圆形波导的形式,被蚀刻进一个光可在其中循环的硅基座内。当光被输入,接着会调节在阈值处工作的激光器的输出,在此区域中,入射光的微小变化都会对该激光的输出产生巨大影响。 该光学设备的原理在于:系统中的每个节点都使用一定波长的光,这一技术被称为波分复用。来自各个节点的...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7设置SWAP分区,小内存服务器的救世主
- Mario游戏-低调大师作品
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- 2048小游戏-低调大师作品
- MySQL8.0.19开启GTID主从同步CentOS8