首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/221660

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

机器学习中,使用Scikit-Learn简单处理文本数据

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 机器学习中,我们总是要先将源数据处理成符合模型算法输入的形式,比如将文字、声音、图像转化成矩阵。对于文本数据首先要进行分词(tokenization),移除停止词(stop words),然后将词语转化成矩阵形式,然后再输入机器学习模型中,这个过程称为特征提取(feature extraction)或者向量化(vectorization)。本文会教你使用Scikit-Learn机器学习库中的三种模型来实现这一转化过程,包括CountVectorizer, TfidfVectorizer, HashingVectorizer。 词袋模型 在将文本数据进行分词操作以后,有两种处理方法,一种是做句法分析,另一种是对这些词从统计学上进行分析,即词袋模型(Bag-of-Words Model, BoW)。词袋模型将文档看成一个袋子,里面装着文档中的词汇表。词袋模型剔除了一些对于统计模型没有意义的词,即停止词,比如那些出现频率高的连词,介词。这些停止词在自然语言中起到很重要的连接作用,和词序一起构成了合乎文...

SIFT在OpenCV中的调用和具体实现(HELU版)

前面我们对sift算法的流程进行简要研究,那么在OpenCV中,sift是如何被调用的?又是如何被实现出来的了? 特别是到了3.0以后,OpenCV对特征点提取这个方面进行了系统重构,那么整个代码结构变成了什么模样? 在代码中 可以看出目前的结构是基于hess的算法进行的重构。那么首先需要解决的是整体的调用和实现结构问题,然后是hess算法的结构问题,再然后才是具体的算法。需要做的事情很多, 一起来研究。 一、OpenCV中sift调用接口和例子 首先是一定要编译使用contrib版本的OpenCV代码,同时最后设置的时候需要注意, 头文件和命名空间要选择正确。 在最新版本的OpenCV中,已经对特征提取这块的函数进行了统一接口: MatmatSrc = imread( "e:/template/lena.jpg" ); Matgray; Matdraw; cvtColor(matSrc,gray,CV_RGB2GRAY); Matdescriptors; std : :vector <KeyPoint >keypoints; //生产sift结...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。