《中国人工智能学会通讯》——2.22 通过概率规划归纳的人类层次概念学习
2.22 通过概率规划归纳的人类层次概念学习 尽管人工智能和机器学习取得了显著的进步,但是机器系统始终还未能触及人类概念性知识的两个方面。首先,对于大多数自然和人工的类别,人们可以仅从一个或少量的一些样例中学得一个新概念,而标准的机器学习算法则需要几十或上百的样例来达到类似的能力。例如,人们可能只需要看到一种新型两轮车的一个样例(见图 1A),就可以掌握这个新概念的范畴,甚至连孩子们都可以利用“单次学习”形成有意义的泛化能力。相反,很多领先的机器学习算法却恰恰对数据需求极高,特别值得一提的就是目前在物体和语音识别基准集上性能达到新高度的“深度学习”模型。其次,即使对于简单的概念(见图 1B),人们也可以比机器学得更加丰富的表达用于各种用途,包括创造新样例(见图 1B ii),将物体解析为部件及关系(见图1B iii),以及基于现有的类别创造新的抽象类别(见图 1B iv)。相反,即使是最好的机器分类算法也不能实现这些额外的功能,这些功能往往很少被研究或者通常需要特定的算法来实现。因此我们面临的一个核心挑战就是如何来解释人类层次概念学习的这两个方面,即人们是如何通过一个或很少的样例学得新...