首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/216592

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

《中国人工智能学会通讯》——7.4 语义组合

7.4 语义组合 分布式词表示的思想可以进一步扩展,即通过组合(Composition)的方式来表示短语、句子,甚至是篇章等更大粒度的语言单元。目前主要通过三种神经网络结构来实现不同的组合方式,即循环神经网络(顺序组合)、卷积神经网络(局部组合)和递归神经网络(根据句法结构进行组合) [8] 。下面以句子“我 喜欢 红 苹果”为例,说明不同组合方式的基本原理及其优缺点,具体可以参见图 1 中“深度学习”部分。 循 环 神 经 网 络(RNN,Recurrent NeuralNetwork)从左至右顺序地对句子中的单元进行两两组合,首先将“我”和“喜欢”组合,生成隐层h 1 ;然后将 h 1 与“红”进行组合,生成 h 2 ,以此类推。传统的循环神经网络模型存在严重的梯度消失(Vanishing Gradient)或者梯度爆炸(ExplodingGradient)问题,尤其是当句子较长,即网络的层数较多时。深度学习中一些常用的技术,如使用ReLU 激活函数、正则化,以及恰当的初始化权重参数等都可以部分解决这一问题。另一类更好的解决方案是减小网络的层数,以 LSTM 和 GRU 等为代表的...

《中国人工智能学会通讯》——4.13 采用关联滤波器的卷积神经网络

4.13 采用关联滤波器的卷积神经网络 经典的卷积神经网络模型[1] (CNN), 大体上是由若干个卷积神经层堆叠构成的深度多层次神经网络模型,由于其在图像识别[2] 、视频分类 [3]等计算机视觉领域中所展现的优异性能,CNN 的拓展应用及其优化研究越来越受到广泛关注。 和传统单隐藏层神经网络不同,卷积神经层中的神经元被有序地组织成一张张特征图。相应的,神经元间的关联权值则构成了滤波器(filter),因为卷积层中特征图与卷积核的矩阵卷积本质是对输入特征图进行空域滤波。这种处理能够提取蕴含在输入特征图中多种的视觉特征。单就输出特征图中的某一个神经元而言,它的输出值由线性滤波器与输入特征图中一个小邻域里的神经元进行内积得到。CNN 的这种神经元与神经元的局部连接,与猫视觉系统中神经细胞具有局部敏感性(localsensitive)的发现[4]相一致。 作为卷积神经层中唯一可以被训练的权值,滤波器在提取包括边缘、角点、端点等视觉特征时发挥主要作用。这些被感知到的局部特征在输出特征图中进一步组合生成更抽象的特征,继而被后续的卷积层进一步提取。在大部分情况下,CNN 都是使用随机梯度下降(s...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。